
A Proposal of Automatic Error Correction in Text

Wulfrano A. Luna-Ramírez, Carlos R. Jaimez-González

Departamento de Tecnologías de la Información, Universidad Autónoma Metropolitana –
Cuajimalpa, Av. Constituyentes No. 1054, Col. Lomas Altas, C.P. 11950, México, D.F.

 {wluna,cjaimez}@correo.cua.uam.mx

Abstract. The great amount of information that can be stored in electronic
media is growing up daily. Many of them is got mainly by typing, such as the
huge of information obtained from web 2.0 sites; or scaned and processing by
an Optical Character Recognition software, like the texts of libraries and
goverment offices. Both processes introduce error in texts, so it is difficult to
use the data for other purposes than just to read it, i.e. the processing of those
texts by other applications like e-learning, learning of languages, electronic
tutorials, data minning, information retrieval and even more specialized systems
such as tiflologic software, specifically blinded people-oriented applications
like automatic reading, where the text would be error free as possible in order to
make easier the text to speech task, and so on. In this paper it is showed an
application of automatic recognition and correction of ortographic errors in
electronic texts. This task is composed of three stages: a) error detection; b)
candidate corrections generation; and c) correction -selection of the best
candidate. The proposal is based in part of speech text categorization, word
similarity, word diccionaries, statistical measures, morphologic analisys and n-
grams based language model of Spanish.

Keywords. Automatic error correction, language models, n-grams, word
eskeleton, part of speech, text processing, string comparison, edit distance.

1 Introduction

The great amount of electronic texts comes mainly from the internet, where the irrup-
tion of social networks and the Web 2.0 has provide us a huge quantity of data in just
a little period of time. Another great source of information is the data obtained from
the scanning of printed documents by means of an Optical Character Recognition
(OCR), used by the libraries and government offices in order to preserve files of his-
toric information. Given this enormous quantity of data, there is a need to apply au-
tomatic tools to process, transform and extract this information. Even more, a lot of
such text contains typing errors and this makes difficult to keep the processing of such
texts by other applications; of course, OCR is another source of errors in texts
[1],[2],[3],[6],[7]. So, to retrieve text without orthographic errors is a difficult task.

Additionally, when a software tool is used, the main problem of having text with
errors is the difficult to use this information as the input of more specialized and even

© E. Castillo, J.C. Chimal, A. Uriarte, L. Cabrera.

Advances in Computer Science and Engineering

Research in Computing Science 58, 2012 pp. 323–338

Paper Recived 30-09-2012 and Acepted 01-11-2012

useful applications, like the wide set of Natural Language Processing (NLP) tools
[2],[11]. Some examples of such applications are: data mining (and of course web
mining), information searching and retrieval, document categorization, and those
systems related with education (learning of foreign languages), phonetic translation,
code and text computer aided edition, and aided to people with disabilities: text to
speech conversion, blind people software assistance, accessibility applications, etc.
[9],[10].

Fortunately, the same knowledge of the NLP field can help to design some me-
thods to cope with errors in texts, like the linguistic knowledge. In this way, according
to the linguistic point of view, there are different levels of text treatment or
processing, some of them are: a) orthographic and morphologic level: describes the
structure and external features of words, i.e. the way the letters are articulated in cer-
tain language; b) syntactic level: describes the paragraphs and the phases, i.e. the
word organization within a text, and the grammatical categories of words, (commonly
called Part of Speech -POS); c) semantic level: fully related with the meaning of text,
takes care of the context where phrases and words appear; d) contextual or pragmatic
level: describe the specific use of words, locutions, phrases, etc., in a certain situation
(the discursive and temporal use) within a domain. On this way, the use of certain
linguistic knowledge is an adequate approach to design automatic applications of text
like the error correction task [1],[2].

In this work, it is used knowledge of the morphologic and contextual levels, spe-
cifically a POS tagger, and different techniques of word matching, additionally a lan-
guage model based in n-grams is used [10],[11].

Briefly, the method is based on speech text categorization, word similarity, word
dictionaries, statistical measures, and n-grams model of language.

In the next sections it is exposed the proposal. The section 2 describes the process
of error correction and a brief classification of text errors is given; the section 3 de-
scribes the method of error correction; after that, some implementation details, expe-
riments, results and discussion are exposed in section 4; section 5 includes conclusion
and future work.

2 The Process of Error Correction in Electronic Text

The Error Correction in Electronic Text is performed in three stages [1],[6],[7]:
1. Error detection: It is oriented to text revision in order to identify the chain

of characters from the text (words and other marks) as part of a given lan-
guage, typically by means of a dictionary comparison, or a grammatical
structure (morphological, syntactical or semantic).

2. Candidate correction generation: detects some possibilities of correction to
a given error.

3. Correction: it is the selection of a specific candidate correction and the subs-
titution of it in the text.

In interactive error correction the system corrector performs the first and the
second stages in an autonomous way, and left to the user the final stage, where the

324 Wulfrano A. Luna-Ramírez, Carlos R. Jaimez-González

decision of which is the real correction is taken. In the other hand, the automatic

error correction, the system does the three stages without the need of the user final
decision [1].

As can be inferred, the automatic error correction is necessary to PLN applications
where the full processing is performed with no user intervention.

Even more, the correction can be divided in two categories [1]: a) isolated word

error correction: where the three stages described before are performed just word by
word; b) the contextual error correction: where can be observed the context of the
word, i.e. the phrase where it is used.
On the other hand, there is a brief classification of errors [1,7] that can be founded in
text (obtained from humans –typing- or by machines –mainly OCR methods). Some
error can derivate in linguistic mistakes by the accidental generation of invalid words
within the language, or can be match with another valid word but not the correct one.
The error classes could be part each other, but in order to understand the nature of
error it is useful to try one classification, which is depicted in Figure 1: a) typograph-
ical: contains wrong characters in the string or word; b) grammatical: violate the arti-
culation rules of a certain language; c) cognitive: the origin of the errors is the lack of
knowledge of orthographic rules; d) phonetical: they are wrong representations of a
given linguistic utterance (a phonetic chunk of language), those are the worst case of
error, because generate a great word malformation and the semantic knowledge im-
plied is high.

Figure 1. A classification of error in text according to their origin: human being or com-
puter systems. One error can originate different cases of linguistic mistake, as is depicted,

A Proposal of Automatic Error Correction in Text 325

for example an OCR error can be derivate in a phonetic error.

From the linguistic knowledge, those different types of errors can be organized ac-
cordingly with the language level related: a) morphologic; b) syntactic; c) semantic;
d) speech structure; and e) pragmatic.

The types of errors are used to design techniques which can be applied to the stag-
es of error correction in texts. One case of error that has been mainly treated by PLN
applications are word error, which are described in the following subsection given the
importance for the automatic or semiautomatic error correction methods that had been
tried [1].

2.1 Word level errors

The level word errors can be treated relatively easy by a computer program, but the
propagation of the mistake accordingly with the linguistic levels needs to be coped
with techniques which imply knowledge about the other levels of the language. The
most successful application use morphological and syntactic knowledge, but the supe-
rior levels when are incorporated in them originate domain dependent applications.

The two main sources of electronic texts (human or OCR) introduce certain classes
of errors that had been afforded by different algorithms, like the edit distance (called
Levenshtein distance) for the morphological errors; and n-gram based comparisons,
for the syntactic and (in a very restricted sense) semantic errors [1]:

 Insertion: from the addition of one character in the string.
 Duplication: the doubling of one character in the string.
 Deletion: to omit one character in the string.
 Substitution: to replace one character by other.
 Transposition: where two characters are swapped.
 Segmentation: when two strings are formed from just one word.
 Union: when two words originate one string.

The segmentation errors are the most frequent in texts from OCR, on the other
hand, the human being commonly produce union errors when typing.

2.2 N-grams

 In order to verify if a sequence of linguistics elements (words, letters, phrases,
etc.) within a text is valid for a given language, it is common use models of languages
which represent the constraints of a certain combination of linguistics elements in
order to build right structures in language [1],[11],[12].

One model of languages is n-grams, a statistical model of sequences of linguistic
elements: typically n word or letters where n >= 2. It is based in the estimation of
sequences probability calculated from a text corpus called the transition probability,
it can give a prediction of the n next element from the n previous according to the
frequency with they appear in corpus. N-grams model uses the history based Markov
supposition: a linguistic element is affected by the local context, so the previous text

326 Wulfrano A. Luna-Ramírez, Carlos R. Jaimez-González

affects the future text [1],[11]. Some examples of n-grams or letters and words are
showed in Figure 2.

Letters N-gram order N-gram example

monogram {i,n,f,o,r,m,a,t,i,c,s}

bigram {in,nf,fo,or,rm,ma,at,ti,ic,cs}

trigram {inf,nfo,for,orm,rma,mat,ati,tic,ics}

Words N-gram order N-gram example

monogram {computing,is,not,easy}

bigram {computing,is}{is,not}{not,easy}

trigram {computing,is,not}{is,not,easy}

Figure 2. The first table shows n-gram examples of the word informatics, and the second
contains n-gram examples of the phrase: computing is not easy. Where n = {1,2,3}

N-grams had been used in error detection and the candidate generation stages of
the error correction task [1]. In the proposal presented in this paper lexicons of bigram
and trigram were used.

In the next sections the proposal of automatic error correction and the implementa-
tion are exposed.

3 The Automatic Error Correction Proposal

The error correction can be focused to the isolated words or taking account the local
context of them. The proposal presented in this paper (POS-Tagged Automatic Error
Correction -PAEC) is oriented to automatic error correction of the chain of words in a
paragraph, and eventually in the full text [14]. It is based on POS text categorization,
word similarity comparison, word dictionaries, statistical measures, and n-grams lan-
guage models.

Some techniques used in automatic detection, candidate generation and selection of
the correction use probability and morphology of words. The proposal adds to those
techniques a POS-tagging process for the sake to augmenting the linguistic know-
ledge in the full process, i.e. uses the morphological and syntactical information
present in the text under revision.

The proposal uses the following resources (texts written in Spanish): 1) a plain text
corpora (CT), 2) a POS-tagged corpora (CA) with ten grammatical categories defined:
verbs, nouns, conjunctions, idioms, articles, adjectives, adverbs, pronouns, interjec-
tions and miscellaneous; 3) a text corpora with inserted errors (CE), from a OCR and
random deletions, insertions or substitutions; 4) a set of word lexicons: nine of each
POS defined, and one of words from all grammatical categories; 5) a n-gram model of
language (bigrams and trigrams); and 6) a n-gram model of language of POS-tags,
which identify the n-gram occurrence of certain POS-tags (bigrams and trigrams).

The PAEC proposal is showed in Figure 3. It is composed of the following mod-
ules for to analyze a text:

A Proposal of Automatic Error Correction in Text 327

1. Preprocessing: the abbreviation words are expanded, upper case and punctua-
tion symbols are extracted, and the resulting text is separated in sentences and
words.

2. POS-tagging. The text is POS-tagged in order to identify the grammatical cat-
egory they belong. The POS-tagger used is an implementation of TBL POS-
tagger [4], trained which semiautomatic annotated Spanish text.

3. Word extraction: it separates the words and the POS-tagged related, in order
to recover the original text, but identifying the grammatical category of words.
Produce a list of word for being analyzed.

4. Contextual error detection: this task makes a list of possible wrong words in
text. It is carried out in two phases:

a. Seeks each word from the text in their corresponding POS-lexicon.
b. An analysis of bigrams that can be formed with the words from the

text for identifying the abnormal combinations, because it can dis-
cover the presence of an error in text.

The process is showed in the Algorithm 1, as follows:
Input:

 P: List of words to be corrected

 LN: Lexicon of language model (n-grams)

Output:

 PE: List of words identified as errors

Var:

 k: It represents the index of P word it is being re-

viewed in each iteration.

 P_k: It is the k member of P

 |P|: Total number of words in the list P

 LP: Word lexicon

 pa: It is the word is being reviewed in each iteration

(P_k)

 ant: previous word of pa

 post: next word of pa

 flag: It indicates if a bigram of pa has been found

 <I>: It is an inserted pseudo-word at begin of each

line

Functions:

add(l,e): add the e element to the list l

Begin

1. k = 0

2. While k < |P| do

3. ant = P_k-1

4. pa = P_k

5. post = P_k+1

6. If pa != <I>

7. If pa not in LP then

8. add(PE,pa)

328 Wulfrano A. Luna-Ramírez, Carlos R. Jaimez-González

9. else

10. If [ant,pa] not in LN then

11. If ant not in LP then

12. add(PE,ant)

13. else

14. flag = 1

15. If [pa,post] not in LN then

16. If post not in LP then

17. add(PE,post)

18. else

19. If post not in PE

20. flag = 2

21. If flag = 2 then

22. add(PE,pa)

23. If flag = 1 then

24. If ant not in PE then

25. add(PE,pa)

26. k = k + 1

27. Return PE
End

Algorithm 1. Contextual Error Detection. This algorithm receives the list of
words to be corrected and the lexicons where the words are searching. It gener-
ate the words identified as errors, this is the input for the next stages of error
correction.

5. Potential corrections generation: taking in count the POS-tag of the potential
errors detected in the previous modules, it makes a candidate generation of
corrections based in n-grams and morphological comparisons (skeleton and
edit distance), seeking in the right lexicon according to the grammatical cate-
gory of words.

6. Correction: it selects the best potential correction from the candidate words,
this is the responsible for taking the right one. This selection is based in: a) n-
gram analysis for identify the most probable combination of those candidates
and the local context of word; b) minimum edit distance of words and candi-
dates; c) skeleton comparisons; and d) size of words and word skeletons.

7. Postprocessing: once the correction has been done in text, the upper case, ab-
breviations and punctuation symbols are reintroduced and the final text is
saved.

A Proposal of Automatic Error Correction in Text 329

Figure 3. The PAEC proposal. The automatic error correction method is based in the
identification of POS of the text and the model of language based in n-grams.

In the following section are discussed the implementation matters, and the experi-
ments carried out in order to verify de efficacy of PAEC proposal.

4 Implementation, experiments and results

The PAEC proposal was implemented using the PERL programming language, be-
cause it is relatively easy to construct text analyzer functions, string matching, and
lexicon searching [14].

In order to test the PAEC proposal of error correction an alternative method of cor-
rection was implemented Morphological Automatic Error Correction (MAEC). This
method does not include a phase of POS-tagging for the sake of represent a more
traditional way to do the error correction in text, i.e. it contains less linguistic know-
ledge, specifically morphologic and syntactic information, so a framework of compar-
ison can be established. The MAEC method is depicted in Figure 4.

330 Wulfrano A. Luna-Ramírez, Carlos R. Jaimez-González

Figure 4. The Morphologic Automatic Error Correction (MAEC) method, it uses a n-
grams model of language and a General Lexicon for making the three stages of text error
correction. It was used for testing the PAEC proposal of error correction.

4.1 Data description

As it was mentioned in the previous section, many linguistic resources were used to
implement the PAEC and MAEC methods of error correction in texts. They are de-
scribed in the Tables 1, 2, 3, 4, 5 and 6.

Table 1. Plain Text Corpus characteristics. The texts were extracted from different Web
sites written in Spanish from the following domains: Essay, Politics, Literature and Phi-
losophy.

Language Spanish
Format ASCII
Files 497
Text lines 137,103
Words 2,877,834
Characters 18,075,061

Table 2. The POS-tagging manually annotated text corpus characteristics. This corpus
was used for the initial training of the POS-tagger which is an iterative and supervised
process, where results in a bigger (automatically) annotated corpus for being used in the
error correction method. In the first stage it was used 0.1509% of the plain text corpus.

Language Spanish

A Proposal of Automatic Error Correction in Text 331

Format ASCII
Files 1
Text lines 243
Words 4,346

In the Table 3 is described the set of testing files, which contains a lot of errors,

one set is obtained from an OCR (Hewlett Packard, ScanJet 3200c, their features can
be seen in the Table 4) process and the other one was generated according to the fol-
lowing process (for simulating typing errors):

1. The file is formatted in order to keep 10 words per line.
2. One word of each line is randomly selected
3. From each word it is randomly selected one character
4. In the position selected is randomly inserted one error (insertion, deletion

or substitution)
5. The modified word is reinserted in its corresponding position in the file.

So, it tis gotten one random error each ten lines.

Table 3. Text Corpus with errors used for testing the error correction methods. The Er-

rors 1 column shows the automatically inserted errors. The Errors 2 refers to the error
from the OCR process.

Texts Lines Strings Characters Errors 1 Errors 2

1 15 79 587 7 5
2 17 92 634 7 8
3 16 126 831 13 2
4 11 147 1068 14 9
5 14 150 985 15 4
6 19 260 1770 25 28
7 17 310 2061 30 10
8 20 358 2045 55 52
9 17 591 3800 116 29
10 19 1153 6774 41 15

Total 165 3,266 20,555 323 162

Table 4. Features of the scanner and the OCR software used to generate the Error 2 set
of files.

Scanner HP ScanJet 3200c
ORC sofware HP Precisionscan LT
Resolution 600 x 1200 dpi
Format of output Plain text (.txt) or riched text (.rtf)

The set of lexicons are showed in the Table 5. The General Lexicon is used by the

MAEC method, while the other lexicons (POS-based) are used by the proposal
PAEC. The contents of each lexicon were taken from the Dictionary of Usual Spanish
[12], and the structure of them is given by the orthographic form or each word and

332 Wulfrano A. Luna-Ramírez, Carlos R. Jaimez-González

their n-grams of letters. Word between one to two letters has just their monogram, but
words of four letter or more has either bigram and trigram.

Table 5. The features of the lexicons used by the error correction methods. A = words to-
tal number. B = larger size of word. C = smaller size of word. D = media of size of
words.

Lexicon A B C D
General 131,648 42 1 17
Verbs 10,206 30 2 11

Prepositions 32 13 1 17
Pronouns 83 8 2 5

Interjections 26 7 2 5
Conjunctions 38 20 1 8

Articles 9 3 2 3
Adjectives 5,508 26 2 14
Adverbs 1,516 23 2 12
Nouns 14,517 25 1 12

Table 6. Features of the N-grams based model of language: larger, smaller and media
size of just bigram are showed.

Bigrams 566,521
Larger frequency 25,542
smaller frequency 1
Media frequency 4

4.2 Experiment Description

The experiment carried out for testing the MAEC and PAEC methods of error correc-
tion in text is composed of two evaluations:

 Simulation of typing errors (errors automatically inserted): the purpose was
to identify the performance of insertion, deletion and substitution errors.

 OCR errors in text: this is a life real set of evaluation, the files comes from
an OCR method after being scanned.

Additionally, for the PAEC proposal, one more test was made: manually POS-
tagged text was tested in order to obtain an ideal tagging, and verify the efficacy of
the method by means to avoid the possibility of getting some deviation because the
precision of the automatic POS-tagger.

The following accounts were made in the texts from both methods:
C: corrected words. Real errors detected and corrected properly.
E: detected errors. Total of errors identifies by the methods.
e: non detected errors. Total of errors not identified by the methods.
I: introduced errors. Wrong substituted words due to the methods identify some false errors.
F: false error correction. The candidate correction selected for correcting the error detected

was wrong, so the error persist.
o: original errors. They are the original errors presents in text.

A Proposal of Automatic Error Correction in Text 333

On the other hand, the rate or errors was calculated using the following formula [66]:
c = p – i / p

Where c: rate of error correction; p: words of text; and i: errors of text (wrong words).

4.3 Results of experiment

The results of the testing of MAEC method of error correction are showed in the Ta-

ble 7 and the results of PAEC method are showed in Table 8. The results of the third
experiment (manually POS-tagged files) are showed in Table 9.

Table 7. The results of the automatic error correction based in n-grams and morphologic
analysis MAEC. The first row is the result of the typing simulation set of testing, while
the second row is the result of the texts from the OCR.

Set of testing p o i C E e I F c

Errors 1 3266 323 140 202 311 31 19 90 0.957
Errors 2 3185 162 104 86 180 10 38 56 0.967

Table 8. The results of the automatic error correction based in n-grams and morphologic
analysis PAEC. The first row is the result of the typing simulation set of testing, while
the second row is the result of the texts from the OCR.

Set of testing p o i C E e I F C

Errors 1 3266 323 370 112 474 28 167 180 0.886
Errors 2 3185 162 229 84 304 8 152 70 0.928

Table 9. The results of the automatic error correction based in n-grams and morphologic
analysis PAEC. Errors 3 row is the test performed with manual POS-tagged files that
come from the simulated typing errors, while the Errors 4 are files that come from an
OCR process.

Set of testing p o i C E e I F c

Errors 3 3266 323 133 217 238 26 27 80 0.959

Errors 4 3266 162 74 104 186 8 33 45 0.977

4.4 Discussion

As can be seen in the results tables, in the experiments on the sets of files Errors 1
and Errors 2 the MAEC method is better than PAEC proposal. These results are dis-
cussed as follows.

The MAEC method has a high rate of no detected errors (e), this affects mainly to
the selection of errors because it introduces new errors (I) originated by errors that
originate valid Spanish words, as a consequence the wrong word is not identified as
error but belongs to a n-gram with low frequency; so, another word would be treated
as an error.

334 Wulfrano A. Luna-Ramírez, Carlos R. Jaimez-González

The most mismatched words are words of one or two letters: y, a, e, la, el, lo, no;
because when a deletion occurs they disappears or become in valid words difficult to
identify and the introduction or error is possible. On this way, the number F is high
too, because the n-gram model can’t offers information when an error appears in a
low frequency n-gram, so when it is weighted by the module of selection of candidate
for making the correction there is a low possibility to select the right one.

On the other hand, the PAEC method was affected by the POS-tagging in two as-
pects:

 In error detection: when a word is taken as an error but the POS-tag is not so
precise, then it is searched in the wrong dictionaries; so, I rate is in-
creased.

 In potential correction generation: as in error detection, the candidates are
generated from a possible wrong dictionary. So, the candidate can be dif-
ferent from the right one.

Finally, in Table 6 can be seen the result from the POS-tagged files. As can be ap-
preciated, the results are improved with respect to both previous tests. On this way,
the PAEC proposal improves it performance given these facts:

 In error detection: now it is possible to identify wrong words that originates
no valid words in Spanish, because can be matched in the right dictionary
according to their POS-tag. Additionally, the errors that originate valid
words are detected because the POS-tag indicate a low frequency n-gram:
a wrong word belongs to a different grammatical category due to the mis-
take, and it is identified.

 In potential correction generation: the candidate generation is performed by
its morphologic features, the n-gram probability and its grammatical cate-
gory adding by this means the morphologic and syntactic knowledge.

 In correction: due to the correct detection the right candidate is selected in
most of the times, so the correction is right.

5 Conclusions and Future Work

According to the results presented in the previous section the PAEC method is better
in error correction when a precise POS-tagging is performed on the text because the
morphologic and syntactic knowledge is properly added to the process, so the ratio-
nale is the right one but there are some improvement to do; if it is not the case, there
are a lot of mistakes in the entire correction process.

Additionally, in order to improve the performance of the PAEC method it is re-
quired to do:

 To explore the use of syntactic n-grams (sn-grams), which are an improved
form of n-grams, constructed using paths in syntactic trees in order to re-
duce the noise given to presence of many arbitrary terms in the n-gram.
The sn-grams can be applied to the three stages of the error correction
process to calculate POS sn-grams and word sn-grams [13].

A Proposal of Automatic Error Correction in Text 335

 To improve the precision of the POS-tagger:
o To train the algorithm in a more intensive way, adding more an-

notated text to star the learning of tagging rules.
o To develop an alternative way to tagging words not identified

and increase the lexical files of the tagger.
o To use more than one tagger in order to improve the rate of cor-

rect tagging by the weighting the results of them.
o To assign more than one POS-tag to words, accordingly to the

probability of tags.
 To improve the detection of errors for searching the potential errors in more

than one grammatical category lexicon given the assignation of more than
one POS-tag.

 To refine the lexicons in two ways:
o Increase the words they contain, in order to extend its lexical

coverage.
o By means of a lemmatization process, so the index of word

would be more flexible because it can contains no only the com-
plete orthographic form.

As a final commentary is the method can be tested on real world errors and a larger
amount of texts. They can be taken from:

 Contents of Web 2.0 pages.
 Government pages of complains, administrative or legal processes and opi-

nion pages.
 A bank of OCR-processed documents from libraries and government offices.

References

1. Kukich K. (1992). Techniques for automatically correcting words in text. ACM Compu-
ting Survey. Vol. 24, pp. 377--439.

2. Jurafsky D. & Martin J. H. (2000). Speech and language processing. An introduction to
natural language processing, computational linguistics and speech recognition. USA: Pren-
tice-Hall.

3. Jones M. P. & Martin J. (1997). Contextual spelling correction using latent semantic anal-
ysis. In Proceedings of the Fifth Conference on Applied Natural Language Processing.
(pp. 166--173). USA: Washington DC.

4. Brill E. (1995). Unsupervised learning of disambiguation rules for part of speech tagging.
In D. Yarowsky & K. Church (Eds.), Proceedings of the third ACL Workshop on Very
Large Corpora (WVLC-95). (pp. 1--13). Somertes, New Jersey: Association for Computa-
tional Linguistics.

5. Jin R., Hauptmann A. G., & Xiang Z. C. (2003, January). A content-based probabilistic
correction model for ocr document retrieval. In T. Kanungo, E. H. Barney Smith, H. Jiany-
ing, P. B. Kantor (Eds.) Document Recognition and Retrieval X (Proceedings of
SPIE/IS&T). (pp. 128--135). Sta. Clara, California: The Society for Imaging Science and
Technology.

6. Klein, S. T., & Kopel, M. (2002, august). A voting system for automatic OCR correction.
In K. J\"arvelin (General Chair), Information Retrieval and OCR: From Converting Con-

336 Wulfrano A. Luna-Ramírez, Carlos R. Jaimez-González

tent to Grasping Meaning. Workshop conducted at the 25th ACM SIGIR Conference,
2002, Tampere, Finland.

7. Taghva, K., & Stofsky, E. (2001). OCRSpell: An interactive spelling correction system for
OCR errors in text. International Journal on Document Analysis and Recognition, 3(3),
125--137.

8. Sproat, R., & Olive, J. (1998). Text-to-speech synthesis. In V. K. Madisetti, & D. B. Wil-
liams (Eds.), The digital signal processing handbook (pp. 46-1--46-11). Boca Raton, Flor-
ida: CRC Press.

9. Alvarez Cabán, J. M. (2000). Alternatives for access and use of Spanish language assistive
technology equipment by individuals with visual disabilities. In California State Universi-
ty Northridge (Comp.), Proceedings of the Technology and Persons with Disabilities Con-
ference, 2000. Los Ángeles: California State University Northridge. Retrieved from
http://www.csun.edu/cod/conf/2000/proceedings/0187Alvarez_Ca

ban.html
10. Moreno Sandoval, A. (1998). Lingüística Computacional. Madrid: Síntesis.
11. Manning C. D. & Schütze H. (2001). Foundations of statistical natural language

processing. Cambridge, Massachusetts: The MIT Press.
12. Lara Luis Fernando (s.f.). Diccionario del Español Usual en México. Biblioteca Virtual

Miguel de Cervantes. Available in :
http://bib.cervantesvirtual.com/servlet/SirveObras/068116509

99196173088968/index.htm?na=26041

13. Grigori Sidorov, Francisco Velasquez, Efstathios Stamatatos, Alexander Gelbukh, and
Liliana Chanona-Hernández. Syntactic Dependency-based N-grams as Classification Fea-
tures. LNAI 7629, 2012, pp. 1-11.

14. Luna Ramírez Wulfrano Arturo & Barrón Machado Jorge. (2004). Mejoras al reconoci-
miento óptico de caracteres y a la correccion de textos electronicos en los sistemas de lec-
tura automatica de texto. Bsc. Thesis. Supervisor: Esmeralda Uraga Serratos. Classifica-
tion: 001 00623 L1 2004. 366 pps.
http://bcct.unam.mx/web/tesiunam.htm &
http://oreon.dgbiblio.unam.mx:8991/F/YMJ36QMYP4YQCSJFJHG7QS5

S22MP3K9VREJM6RAP6QSSUYANAG-

37691?func=service&doc_number=000334454&line_number=0007&ser

vice_type=TAG"

A Proposal of Automatic Error Correction in Text 337

Recognizing Textual Entailment
with Similarity Metrics

Miguel Rios1 and Alexander Gelbukh2

1 University of Wolverhampton,
Research Group in Computational Linguistics,

Stafford Street, Wolverhampton, WV1 1SB, UK
M.Rios@wlv.ac.uk

2 Center for Computing Research,
National Polytechnic Institute,

Mexico City, Mexico
www.gelbukh.com

Abstract. We present a system for the Recognizing Textual Entail-
ment task, based on various similarity metrics, namely (i) string-based
metrics, (ii) chunk-based metric, (iii) named entities-based metric, and
(iv) shallow semantic metric. We propose the chunk-based and named
entities-based metrics to address limitations of previous syntactic and
semantic-based metrics. We add the scores of the metrics as features
for a machine learning algorithm. Then, we compare our results with
related work. The performance of our system is comparable with the
average performance of the Recognizing Textual Entailment challenges
systems, though lower than that of the best existing methods. However,
unlike more sophisticated methods, our method uses only a small number
of simple features.

1 Introduction

The Recognizing Textual Entailment (RTE) task consists in deciding, given two
textual expressions, whether the meaning of one of them, called Hypothesis
(H), is entailed by the meaning of the other one, called Text (T) [5]. The RTE
Challenge is a generic task which addresses common semantic inference needs
across Natural Language Processing (NLP) applications.

In order to address the task of RTE, different methods have been proposed.
Most of these methods rely on machine learning (ML) algorithms. For example, a
baseline method proposed by Mehdad and Magnini [9] consists in measuring the
word overlap between the Text and Hypothesis; the word overlap is the number
of words shared between the two textual expressions. Their method is organized
into three main steps: (i) pre-processing: all T–H pairs are tokenized and lem-
matized; (ii) computing of the word overlap; (iii) building a binary classifier. An
overlap threshold is computed over the training data, and the test data is classi-
fied based on the learned threshold. If the word overlap score is greater than the
threshold, then the entailment decision is TRUE (there is entailment), otherwise

© E. Castillo, J.C. Chimal, A. Uriarte, L. Cabrera.

Advances in Computer Science and Engineering

Research in Computing Science 58, 2012 pp. 339–349

Paper Recived and Acepted UK, Mexico

it is FALSE (there is no entailment). The motivation behind this paradigm is
that a T–H pair with a strong similarity score has good chances to represent
an entailment relation. Different types of similarity metrics are applied over the
T–H pair in order to extract features and to train a classifier.

Similarity metrics that deal with semantics usually use information from on-
tologies or semantic representations given by parsers [2]. However, the compari-
son between texts is done by matching the semantic labels, and not by matching
the content of those units.

In this work we describe an RTE system based on various similarity metrics.
In addition, we propose new similarity metrics based on different representations
of text for RTE that are: (i) chunks and (ii) Named Entities. The goal of the
introduction of these new features is to address limitations of previous syntactic-
and semantic-based metrics. We add the scores of the new metrics along with
simple string-based similarity metrics and a shallow-semantic-based metric [11]
as features for a machine learning method for RTE. Then, we compare our results
with related work on RTE. The performance of our system is comparable with
the average performance of the RTE challenges, though it is lower than that of
the best known methods.

In the remainder of this paper we discuss the related work (Section 2), de-
scribe our RTE system (Section 3) and compare its performance with previous
work (Section 4). Finally, we give conclusions and suggest some future work
(Section 5).

2 Related Work

Burchardt et al. [2] introduced new features for RTE that involve deep linguistic
analysis and shallow word overlap measure. Their method consists of three steps:
first, they represent the T–H pair with the Frame Semantics (FS) and Lexical
Functional Grammars (LFG) formalisms; this representation is similar to the
Semantic Role Labeling. Then, they calculate a similarity score based on match-
ing the LFG graphs, and finally make a statistical entailment decision. They
used the RTE-2 and RTE-3 datasets as training data, and extracted 47 features
from the deep and the shallow overlap. These features consist of combinations
of predicates overlaps, grammatical functions match, and lexical overlaps.

The methods that use Semantic Role Labeling (SRL) for RTE use the an-
notation provided by a semantic parser to measure the similarity between texts.
However, they only measure the similarity in terms of how many labels the two
texts share (overlaps) and not in termos of the content marked with those labels.

Delmonte et al. [8] introduced semantic-mismatch features, such as locations,
discourse markers, quantifiers, and antonyms. Their entailment decisions are
based on applying rewards and penalties over the semantic similarity and shallow
similarity scores. Later, Delmonte et al. [6] participated in the RTE-2 challenge
with an enhanced version of their previous system. Their new system uses new
features based on heuristics, such as Augmented Head Dependency Structures,
grammatical relations, negations, and modal verbs.

340 Miguel Rios and Alexander Gelbukh

Roth and Sammons [12] used semantic logical inferences for RTE, where the
representation method is a Bag-of-Lexical-Items (BoLI). The BoLI relies in word
overlap. It states that the entailment relation holds if the overlap score is above
a certain threshold. An extended set of stopwords is used to select the most
important concepts for the BoLI, such as auxiliary verbs, articles, exclamations,
discourse markers, and words in WordNet. Also, in order to recognize relations
in the T–H pairs, the system checks matchings between SRLs, and then applies
a series of transformations over the semantic representations to make easier
to determine the entailment. Their system uses the following transformation
operations:

– annotate, which make some implicit property of the meaning of the sentence
explicit;

– simplify and transform, which remove or alter some section of the text T in
order to improve annotation accuracy or make it more similar to H;

– compare, which compares some elements of the two members of the entail-
ment pair and assigns a score that correlates to how successfully those ele-
ments of the H can be subsumed by the T.

3 Experimental Design

The RTE task can be seen as a binary classification task, where the entailment
relations are the classes. Then the RTE benchmark datasets can be used to train
a classifier [4].

Our RTE system is based on a supervised machine learning algorithm. We
train the machine learning algorithm with similarity scores computed over the
T–H pairs extracted from different classes of metrics described below.

With these metrics we build a vector of similarity scores used as features to
train a machine learning algorithm. We use the development datasets from the
RTE 1 to 3 benchmark to train different ML algorithms, using their implemen-
tations from the WEKA toolset3 without any parameter optimization. Then, we
test the models with a tenfold cross-validation over the development datasets to
decide which algorithm to use for the comparison against related work over the
test datasets.

The metrics we used as as follows.

3.1 Lexical Metrics

We use the following string-based similarity metrics: precision, recall, and F1:

precision(T, H) =
|T ⋂H |
|H | (1)

recall(T, H) =
|T ⋂H |

|T | (2)

3 http://www.cs.waikato.ac.nz/ml/weka/

Recognizing Textual Entailment with Similarity Metrics 341

F1(T, H) = 2 × precision(T, H) × recall(T, H)
precision(T, H) + recall(T, H)

(3)

As input for the metrics we use a bag-of-words (BoW) representation of the
T–H pairs. However, we only use content words to compute the similarity score
in the T–H pairs.

3.2 Chunking

Shallow parsing (or chunking) consists in tagging a text with syntactically cor-
related parts. This alternative to full parsing is more efficient and more robust.
Chunks are non-overlapping regions of text that are sequences of constituents
that form a group with a grammatical role (e.g. noun group). The motivation
for introducing a chunking similarity metric consists in that a T–H pair with a
similar syntax structure can hold an entailment relation. The chunking feature
is defined as the average of the number of similar chunks (in the same order) in
the T–H pair:

chunking(T, H) =
1
m

m∑

n=1

simChunk(tn, hn), (4)

where m is the number of chunks in T, tn is the n-th chunk tag and content
in the same order, and simChunk(tn, hn) = 1 if the content and annotation of
the chunk are the same, and 0.5 if the content of the chunk is different but the
chunk tag is still the same.

The following example shows how the chunking metric works. Consider:

T: Along with chipmaker Intel , the companies include Sony Corp. , Microsoft
Corp. , NNP Co. , IBM Corp. , Gateway Inc. and Nokia Corp.

H: Along with chip maker Intel , the companies include Sony , Microsoft , NNP ,
International Business Machines , Gateway , Nokia and others.

First, for each chunk, this metric compares and scores the content of the tag:
whether it is the same chunk group and whether it is the same order of chunks.
Table 1 shows how this metric scores each chunk for the previous example.

Finally, the chunking metric (4) computes the individual scores and gives a
final score of chunking(T, H) = 0.64 for this example.

3.3 Named Entities

Named Entity Recognition (NER) is a task that identifies and classifies parts of
a text into predefined classes such as names of persons, organizations, locations,
expressions of times, quantities, monetary values, percentages, etc. For example,
from the text: “Acme Corp bought a new...”, Acme Corp is identified as a named
entity and classified as an organization.

342 Miguel Rios and Alexander Gelbukh

Table 1. Example of partial scores given by the chunking metric

Tag Content Tag Content Score

PP Along PP Along 1
PP with PP with 1
NP chipmaker Intel NP chip maker Intel 0.5
NP the companies NP the companies 1
VP include VP include 1
NP Sony Corp. NP Sony 0.5
NP Microsoft Corp. NP Microsoft 0.5
NP IBM Corp. NP International Business Machines 0.5
NP Gateway Inc. NP Gateway 0.5
NP Nokia Corp. NP Nokia and others. 0.5

The motivation of a similarity measure based on NER is that the participants
in H should be the same as those in T, and H should not include more participants
in order to hold an entailment relation. The goal of the measure is to deal with
synonymous entities.

Our approach for the NER similarity measure consists in the following: first,
the named entities are grouped by type; then, the content of the same type
of groups (e.g Scripps Hospital is an organization) is compared using the cosine
similarity equation. However, if the surface realizations of the same named entity
in T and H are different, we retrieve words that share the same context as the
named entity in question; the words are retrieved from Dekang Lin’s thesaurus.
Therefore, the cosine similarity equation will have more information than just
the named entity.

For instance, consider the T–H pair from the previous example. The entity
from T: IBM Corp. and the entity from H: International Business Machines
have the same tag organization. Our metric groups them and adds words from
the similarity thesaurus resulting in the following bag-of-words (BoW) represen-
tation:
T’s entities: {IBM Corp., ..., Microsoft, Intel, Sun Microsystems, Motorola /

Motorola, Hewlett-Packard / Hewlett-Packard, Novell, Apple Com-
puter, ...}

H’s entities: {International Business Machines, ..., Apple Computer, Yahoo,
Microsoft, Alcoa, ...}.

Finally, the metric computes the cosine similarity between these BoWs.

3.4 TINE

TINE [11] is an automatic metric based on the use of shallow semantics to
align predicates and their respective arguments between a pair of sentences.
The metric combines a lexical matching with a shallow semantic component to
address adequacy for machine translation evaluation. The goal of this metric is
to provide a flexible way of align shallow semantic representations (semantic role

Recognizing Textual Entailment with Similarity Metrics 343

labels) by using both the semantic structure of the sentence and the content of
the semantic components.

A verb in the hypothesis H is aligned to a verb in the text T if they are
related according to the following heuristics: (i) the two verbs share at least one
class in VerbNet, or (ii) the pair of verbs holds a relation in VerbOcean.

For example, in VerbNet the verbs spook and terrify share the same class,
namely, amuse-31.1, and in VerbOcean the verb dress is related to the verb wear.

The following example shows how the alignment of verbs and predicates is
performed. Consider:

H: The lack of snow discourages people from ordering ski stays in hotels and
boarding houses.

T: The lack of snow is putting people off booking ski holidays in hotels and guest
houses.

Then, the algorithm proceeds with the following steps:

1. Extract verbs from H: VH = {discourages, ordering}
2. Extract verbs from T: VT = {putting, booking}
3. Similar verbs aligned with VerbNet (shared class get-13.5.1):

V = {(vH = order, vT = book)}
4. Compare arguments of (vH = order, vT = book):

AH = {A0, A1, AM-LOC}
AT = {A0, A1, AM-LOC}

5. AH ∩ AT = {A0, A1, AM-LOC}
6. Exact matches:

HA0 = {people} and TA0 = {people}
7. Different word forms:

expand the representation:
HA1 = {ski, stays} and TA1 = {ski, holidays}
to:
HA1 = {{ski}, {stays, remain, ..., journey, ...}}
TA1 = {{ski}, {holidays, vacations, trips, ..., journey, ...}}

8. Similarly with HAM−LOC and TAM−LOC

Here, VH is the set of verbs in the hypothesis H, VT is the set of verbs in the
text T, AH is the set of arguments of the hypothesis H, and AT is the set of
arguments in the text T.

The metric aligns similar verbs with the ontology and similar arguments with
a distributional thesaurus. Then, the metric computes a similarity score given
the previous alignment points.

4 Experimental Results

We compared our method with other machine learning-based methods and with
methods that use a SRL representation as one of its features.

344 Miguel Rios and Alexander Gelbukh

Table 2. The 10-fold cross-validation accuracy results over the RTE development
datasets

Algorithm RTE-1 RTE-2 RTE-3

SVM 64.90% 59.00% 66.62%
NäıveBayes 62.25% 58.25% 64.50%
AdaBoost 64.90% 57.75% 62.75%
BayesNet 64.19% 59.00% 65.25%
LogitBoost 62.25% 52.50% 61.00%
MultiBoostAB 64.55% 60.50% 64.00%
RBFNetwork 61.90% 54.25% 64.80%
VotedPerceptron 63.31% 57.75% 65.80%

We used the RTE-1, RTE-2, and RTE-3 development datasets to train the
classifiers. Table 2 shows the tenfold cross-validation results.

The SVM achieved the best results in the experiments during the training
phase. We use this algorithm to perform the classification over the RTE test
datasets. The data used for classification are the test datasets of the RTE chal-
lenge. The experimental results are summarized in Table 3.

Table 3. Comparison with previous accuracy results over the RTE test datasets

Method RTE-1 RTE-2 RTE-3

Roth and Sammons [12] – – 65.56%
Burchardt and Frank [1], Burchardt et al. [2] 54.6% 59.8% 62.62%
Delmonte et al. [8], [6], [7] 59.25% 54.75% 58.75%
Our method with SVM 53.87% 55.37% 61.75%

Table 4 shows the overall accuracy results of the RTE systems on the RTE
test datasets against our method. Our method is close to the average performance
but below the best method.

However, the systems that showed the best results in the RTE challenge are
complex and sophisticated systems. In contrast, our method relies on a small
number of simple features. Our main semantic feature is focused in predicate-
argument information, while other methods tackle several semantic phenomena
such as negation and discourse information [12] or rely on a large number of
features [2].

Table 4. Comparison with overall accuracy results over the RTE test datasets

Challenge Our method Average Best

RTE-1 53.87% 55.12% 70.00%
RTE-2 55.37% 58.62% 75.38%
RTE-3 61.75% 61.14% 80.00%

Recognizing Textual Entailment with Similarity Metrics 345

Error analysis shows that the most common source of errors for our method
is the TINE similarity metric. The following categories of errors made by this
metric are the most common ones:

1. Lack of coverage in the ontologies, for example:

T: This year, women were awarded the Nobel Prize in all fields except
physics.

H: This year the women received the Nobel prizes in all categories less phys-
ical.

The lack of coverage in the VerbNet ontology prevented the detection of the
similarity between receive and award.

2. Matching of unrelated verbs, for example:

T: If snow falls on the slopes this week, Christmas will sell out too, says
Schiefert.

H: If the roads remain snowfall during the week, the dates of Christmas will
dry up, said Schiefert.

In VerbOcean, remain and say are incorrectly indicated to be related. The
VerbOcean dictionary was created by a semi-automatic extraction algo-
rithm [3] with an average accuracy of 65.5% and thus contain a considerable
number of errors.

3. Incorrect tagging of the semantic roles by the semantic parser SENNA4, for
example:

T: Colder weather is forecast for Thursday, so if anything falls, it should
be snow.

H: On Thursday, must fall temperatures and, if there is rain, in the moun-
tains should.

The position of the predicates affects the SRL tagging. The predicate fall
has the roles (A1, V, and S-A1) in the reference, and the roles (AM-ADV,
A0, AM-MOD, and AM-DIS) in the hypothesis H. As a consequence, the
metric cannot match the fillers. Also, SRL systems do not detect phrasal
verbs: e.g., the action putting people off is similar to discourages but current
SRL systems do not detect this.

As we see, the quality of the semantic parser and the coverage of the ontolo-
gies are significant causes that affect the performance of our method.

In addition, on the RTE-1 test dataset with 800 T–H pairs, the coverage of
the semantic metric is 491 pairs. This means that the system only predicts a
certain amount of pairs. On the RTE-3 dataset, on which we obtain the best
result, also has 800 T–H pairs, but the coverage on this dataset is much better:
556 pairs. Accordingly, our method has a smaller amount of errors due to a
greater number of semantic-scored pairs.

4 SENNA, http://ml.nec-labs.com/senna/

346 Miguel Rios and Alexander Gelbukh

5 Conclusions and Future Work

We have presented a machine learning-based system for Recognizing Textual
Entailment (RTE) task, based on new similarity metrics as well as simple string-
based metrics and a shallow-semantic metric. The new similarity measures are
based on: (i) chunking, (ii) named entities.

Our method has performance comparable with the average performance of
methods in the RTE challenges. However, its performance is below that of the
best know methods. On the other hand, our method relies on a small num-
ber of simple features, and our system only tackles one semantic phenomenon:
predicate-argument information.

A preliminary error analysis shows that a main source of errors is the align-
ment of predicates by the TINE measure. However, if the system has more pairs
tagged with predicate-argument information, then its performance improves.

In order to improve the performance of our current machine learning-based
system, in our future work we will attempt to resolve the errors caused by the
TINE metric based on the error analysis, or will use a different semantic approach
to RTE [10].

Our semantic metric uses a distributional thesaurus to measure the similarity
between arguments, so that, for example, cat and dog will be aligned because
they share the same context. A possible direction to improve the semantic metric
is to add hard constraints over the core arguments. These constrains can be
defined as thresholds learned over the training dataset.

Acknowlegments

This work was partially supported by the Mexican National Council for Science
and Technology (CONACYT), scholarship reference 309261, and SIP-IPN grant
20121823.

References

[1] Burchardt, A., Frank, A.: Approaching textual entailment with LFG and
FrameNet frames. In: Proceedings of the Second PASCAL Challenges Work-
shop on Recognising Textual Entailment. Venice, Italy (2006)

[2] Burchardt, A., Reiter, N., Thater, S., Frank, A.: A semantic approach to
textual entailment: System evaluation and task analysis. In: Proceedings
of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing.
pp. 10–15. Association for Computational Linguistics, Prague (June 2007)

[3] Chklovski, T., Pantel, P.: VerbOcean: Mining the Web for Fine-Grained
Semantic Verb Relations. In: Lin, D., Wu, D. (eds.) Proceedings of EMNLP
2004. pp. 33–40. Barcelona, Spain (Jul 2004)

[4] Dagan, I., Dolan, B., Magnini, B., Roth, D.: Recognizing textual entail-
ment: Rational, evaluation and approaches – erratum. Natural Language
Engineering 16(1), 105 (2010)

Recognizing Textual Entailment with Similarity Metrics 347

[5] Dagan, I., Glickman, O.: The PASCAL Recognising Textual Entailment
challenge. In: In Proceedings of the PASCAL Challenges Workshop on
Recognising Textual Entailment (2005)

[6] Delmonte, R., Bristot, A., Boniforti, M.A.P., Tonelli, S.: Coping with seman-
tic uncertainty with VENSES. In: Proceedings of the Second PASCAL Chal-
lenges Workshop on Recognising Textual Entailment. Venice, Italy (2006)

[7] Delmonte, R., Bristot, A., Piccolino Boniforti, M.A., Tonelli, S.: Entailment
and anaphora resolution in RTE 3. In: Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing. pp. 48–53. Association
for Computational Linguistics, Prague (June 2007)

[8] Delmonte, R., Tonelli, S., Piccolino Boniforti, M.A., Bristot, A., Pianta,
E.: VENSES – a linguistically-based system for semantic evaluation. In: In
Proceedings of the PASCAL Challenges Workshop on Recognising Textual
Entailment (2005)

[9] Mehdad, Y., Magnini, B.: A word overlap baseline for the Recognizing Tex-
tual Entailment task (2009)

[10] Pakray, P., Barman, U., Bandyopadhyay, S., Gelbukh, A.: A statistics-based
semantic textual entailment system. Lecture Notes in Artificial Intelligence
7094, 267–276 (2011)

[11] Rios, M., Aziz, W., Specia, L.: TINE: A metric to assess MT adequacy. In:
Proceedings of the Sixth Workshop on Statistical Machine Translation. pp.
116–122. Association for Computational Linguistics, Edinburgh, Scotland
(July 2011)

[12] Roth, D., Sammons, M.: Semantic and logical inference model for textual
entailment. In: Proceedings of the ACL-PASCAL Workshop on Textual
Entailment and Paraphrasing. pp. 107–112. Association for Computational
Linguistics, Prague (June 2007)

348 Miguel Rios and Alexander Gelbukh

Neural Networks &
Unconventional Computation

Image transform based on an alpha-beta
convolution model

Antonio Alarcón-Paredes, Elías Ventura-Molina, Oleksiy Pogrebnyak, and
Amadeo Argüelles-Cruz

Center for Computing Research, National Polytechnic Institute. México, D.F.
aparedesb07@sagitario.cic.ipn.mx, eventura_a12@sagitario.cic.ipn.mx,

olek@cic.ipn.mx, jamadeo@cic.ipn.mx

Abstract. In this paper, it is presented a novel method based on an
alpha-beta convolution model, to be used at transformation stage in an
image compression system. This method takes the alpha-beta�s associa-
tive memories theory and is applied to a set of images in grayscale. Since
these associative memories are used for data with binary inputs and out-
puts, it is also presented a modi�cation to the original alpha and beta
operators in order to be applied directly to the the pixel values of an im-
age. The proposed method is applied as a traditional convolution, with
the di¤erence that instead of making sums of products, there are per-
formed maximum or minimum operations of the alphas and betas. The
Shannon entropy is used to measure the amount of bits of information
contained in the images. The traditional images transform usually do
not provide any kind of compression and they also use complex opera-
tions. Therefore, this new method represents an advantage by o¤ering a
lower amount of entropy in the transformed image that in the original
image by making use of simple operations such as addition, subtraction,
minimums, and maximums.

1 Introduction

The imminent growth in the amount of the existing information has given the
guideline to think on mathematical methods that help us to represent the infor-
mation in a compact manner, reducing the number of bits used for its representa-
tion. For this reason, data compression systems and, in a particular case, image
compression systems have been created. There exists lossless image compression
systems, whose stages are: transformation and coding; as well as image compres-
sion systems, whose stages are: transformation, quantization and coding [5], [13].
Although there are a large number of image transforms, the most common one
is the DCT (Discrete Cosine Transform). The DCT was proposed by Ahmed,
Nataraj and Rao in 1974 [1]. It is a transform that is applied to blocks of pixels
of an image, each block is usually constituted by 8 x 8 or 16 x 16 pixels, and it
consists in a bijective function that maps one to one the image values allowing
DCT to be reversible, thus there is no loss of information, but it does not com-
press the image neither [10], [17]. From the early 80s, the CCITT (Consultative

© E. Castillo, J.C. Chimal, A. Uriarte, L. Cabrera.

Advances in Computer Science and Engineering

Research in Computing Science 58, 2012 pp. 351–362

Paper Recived 28-09-2012 and Acepted 07-11-2012

Committee for International Telegraphy and Telephony) and ISO (International
Organization for Standardization) began to work together in order to develop an
international standard for image compression, which was achieved in 1992 with
the acronym JPEG (Joint Photographic Experts Group) [9], [20] that uses the
DCT in its transformation stage. From this date, diverse modi�cations have been
developed to the DCT for its fast implementation, such as Chen [4], who takes
advantage of the symmetry of the cosine function to reduce the needed opera-
tions to implement the transform. Subsequently, Arai [3] develops the DCT only
taking into consideration the real part of a DFT (Discrete Fourier transform)
and using the FFT (Fast Fourier Transform) algorithm that was proposed by
Winogard in [22]. In addition there have been new developments for the DCT
which can be consulted in [12], [15], [16] and [24]. In Shannon information theory
[18], the quantity of information is de�ned as a probabilistic process, taking the
image as the information source; denoted by S with n elements s1; s2; : : : ; sn and
i = 1; 2; : : : n, its entropy is de�ned as:

H (S) = �
X
i

P (si) log2 (P (si)) (1)

for this reason, it is used the Shannon entropy as a measure to know the amount
of bits which represent each image in this paper.
This paper is organized as follows: in section 2 it is shown the theoretical

framework for the development of the new method, section 3 describes the pro-
posed method. The results and conclusions are shown in section 4 and section
5, respectively.

2 Theoretical Support

This paper presents a new method based on a modi�cation of the original al-
gorithm of the alpha-beta associative memories [23], and focuses in the image
transformation stage. This section shows the theory which is the base for the
proposed method.

2.1 Associative memories

The AM (Associative memories) [8] are pattern recognition�s algorithms, whose
purpose is to recover full patterns from input patterns that could be altered.
Input patterns are represented by column-vectors x and output patterns by
column-vector y. For each input pattern x, there is one and only one output
pattern y, forming an association as an ordered pair: (x;y). The set of the p
pattern associations is named fundamental association set or simply fundamental
set, with � = 1; 2; : : : ; p, and it is represented as:

f(x�;y�) j� = 1; 2; : : : pg (2)

The operation of an AM is divided into two phases: the learning phase, where
input patterns x are associated with their corresponding output patterns y to

352 A. Alarcón-Paredes, E. Ventura-Molina, O. Pogrebnyak, and A. Arguelles-Cruz

generate the associative memory; and the recovery phase, in which we introduce
a pattern x as the input to the memory, and as result we expect to receive a
corresponding pattern y in the outcome. There are two types of AM which are
classi�ed according to the nature of their pattern: auto-associative memories
and hetero-associative memories. The memory is auto-associative if it ful�lls
that 8�;x� = y�, i.e. each input pattern is equal to its corresponding output
pattern; on the other hand, the memory will be hetero-associative if it is true
that 9� 2 f1; 2; : : : ; pg jx� 6= y�, i.e. if there exists at least an input pattern
di¤erent to its corresponding output pattern.
Traditional models of AM, such as Lernmatrix [19], Correlograph [21], as

well as Linear Associator [2], [11] operate within the theory of arti�cial neuron
model of McCulloch and Pitts [14]. That is,its operation is based on sums of
products. In addition there are the morphological AM [6] and the alpha-beta
AM [23] which are the only ones that are handled outside of this theory and
instead of sums of products, they use maximums (or minimums) values of the
sums, in the case of the morphological; and maximum (or minimum) of alphas
and betas, in the case of the alpha-beta.

2.2 Convolution

On the other hand, in the theory of image processing, convolution is widely used.
The convolution of an image is an operation in the spatial domain, i.e., a method
which operates directly on the value of the pixels in the image. To perform a
convolution is required to de�ne a mask, also called window, whose choice of
values should be carefully taken; the mask is usually 3px�3px. Convolution can
be expressed as follows:

g (x; y) = T [f (x; y)] (3)

where f(x; y) is the input image, g(x; y) is the output image and T is an op-
erator in f that is de�ned on speci�c neighbors points to (x; y); we will place the
mask on each of these points to make the necessary operations. These operations
consist of multiplying the pixels in the neighborhood (x; y) with the coe¢ cients
of the mask, adding the results to obtain the response in the pixel (x; y) of the
resulting image [7].
Note that in both the classical AM models, and the convolution of images

there are used sums of products; in the case of the alpha-beta AM, to its op-
eration the sum of products is changed to maximums (or minimums) of alpha
and betas. For the development of this work, it was thought to exchange the
traditional function of convolution for a new method that is implemented as a
convolution based on maximum or minimum of alfas and betas.

2.3 Alpha and beta operations

The alpha-beta AM [23] uses maximums and minimums and two binary oper-
ations proposed speci�cally: alpha (�) and beta (�), that establish the name

Image transform based on an alpha-beta convolution model 353

of alpha-beta AM. In order to make the de�nition of the binary operations al-
pha and beta, there should be speci�ed the set A and the set B beforehand, as
following:

A = f0; 1g and B = f0; 1; 2g (4)

Binary operation � : A�A! B is de�ned as:

Table 1 � : A�A! B

x y � (x; y)
0 0 1
0 1 0
1 0 2
1 1 1

Binary operation � : B �A! A is de�ned as:

Table 2 � : B �A! A

x y � (x; y)
0 0 0
0 1 0
1 0 0
1 1 1
2 0 1
2 1 1

3 Proposed method

As can be shown, in Table 1 and Table 2, the alpha and beta operators could
only handle binary inputs and outputs, hence it was required to extend them
in order to handle real-valued numbers and thus operate directly over the pixel
value of an image.
The new operation �R : R� R �! R is de�ned as

�R (x; y) = x� y + 1 (5)

The alpha-beta AM can be max type and min type; besides, the method
proposed in this paper can operate both types: max or min. Thus, the operation
�R : R � R �! R has an operation for each type of recovery, max (�_R) or min
(�^R), as follows:

If x = y �! �R (x; y) = 1 (6)

�_R (x; y) = y � jxj � 1 (7)

�^R (x; y) = x� jyj � 1 (8)

354 A. Alarcón-Paredes, E. Ventura-Molina, O. Pogrebnyak, and A. Arguelles-Cruz

De�nition 1. Let A = [aij] be a matrix of size m � n representing an image,
and let sb = [sbij] be a matrix d � d -dimensional and represents an image
sub-block of A, such as:

sbij = aritj (9)

where i; j = 1; 2; : : : ; d, r = 1; 2; : : : ;m, t = 1; 2; : : : ; n, and sbij = aritj repre-
sents the pixel value given by coordinates (r + i; t+ j), where (r; t) and (r + d; t+ d)
are the beginning and the end of the sub-block, respectively.

De�nition 2. Let A = [aij] be a matrix of size m�n that represents an image.
The value denoted by " is a value greater than the maximum value that could
assume a pixel of an image, thus:

" >
_
8i;j

aij (10)

De�nition 3. Let sb = [sbij] be a matrix d� d -dimensional and represents an
image sub-block, and let " >

W
8i;j

sbij be a value greater than the maximum value

that could assume a pixel of the sub-block sb. The transformation mask of
max type, denoted as mt_ =

�
mt_ij

�
h�h, is initialized to 0, except for its central

pixel that assumes the value ", when the max type (�_R) is used:

mt_ij =

�
"
0
central pixel
other case

(11)

De�nition 4. Let sb = [sbij] be a matrix d� d -dimensional and represents an
image sub-block, and let " >

W
8i;j

sbij be a value greater than the maximum value

that could assume a pixel of the sub-block sb. The transformation mask of
min type, denoted as mt^ =

�
mt^ij

�
h�h, is initialized to 0, except for its central

pixel that assumes the value �", when the min type (�^R) is used:

mt^ij =

�
�"
0
central pixel
other case

(12)

By means of simplicity, in the following de�nitions, the notation of the sub-
block sb = [sbij] and the transformation mask (either if is max or min) mt =
[mtij] as coordinates, thus, [sbij] = sb(i; j) y [mtij] =mt (i; j).

De�nition 5. Let sb = [sbij] be a matrix of size d � d representing an image
sub-block, let mt_ = [mt_rt]h�h be a transformation mask max type, and let
t = [tij] be the transformed sub-block; the alpha max convolution operation�
��max

�
sb;mt_

��
, is expressed as:

t (i; j) = ��max
�
sb;mt_

�
=

a_
i=�a

b_
j=�b

�R (sb (i+ r; j + t) ;mt
_ (r; t)) (13)

where a = h�1
2 and b = h�1

2 .

Image transform based on an alpha-beta convolution model 355

De�nition 6. Let sb = [sbij] be a matrix of size d � d representing an image
sub-block, let mt_ = [mt_rt]h�h be a transformation mask max type, and let
t = [tij] be the transformed sub-block; the beta min convolution operation�
��min

�
sb;mt_

��
, is expressed as:

t (i; j) = ��min
�
sb;mt_

�
=

â

i=�a

b̂

j=�b
�^R (sb (i+ r; j + t) ;mt

_ (r; t)) (14)

where a = h�1
2 and b = h�1

2 .

De�nition 7. Let sb = [sbij] be a matrix of size d � d representing an image
sub-block, let mt_ = [mt_rt]h�h be a transformation mask max type, and let
t = [tij] be the transformed sub-block; the alpha min convolution operation�
��min

�
sb;mt^

��
, is expressed as:

t (i; j) = ��min
�
sb;mt^

�
=

â

i=�a

b̂

j=�b
�R (sb (i+ r; j + t) ;mt

^ (r; t)) (15)

where a = h�1
2 and b = h�1

2 .

De�nition 8. Let sb = [sbij] be a matrix of size d � d representing an image
sub-block, let mt_ = [mt_rt]h�h be a transformation mask max type, and let
t = [tij] be the transformed sub-block; the beta max convolution operation�
��max

�
sb;mt^

��
, is expressed as:

t (i; j) = ��max
�
sb;mt^

�
=

a_
i=�a

b_
j=�b

�_R (sb (i+ r; j + t) ;mt
^ (r; t)) (16)

where a = h�1
2 and b = h�1

2 .

Alpha-beta convolution transform algorithm

1. As usual on traditional image transforming methods, the alpha-beta con-
volution method proposed in here, is applied individually to an image sub-
blocks of size d � d. The image denoted as A = [aij]m�n is divided into
� = (m=d) � (n=d) sub-blocks sb!j! = 1; 2; : : : ; �, where m and n are the
image height and width respectively, aij is the ij � th pixel of image with
a 2 f0; 1; 2; : : : ; L� 1g being L the number of bits that represents the value
of a pixel.

2. Initialize to 0 all values in the resulting image T = [tij]m�n.
3. Create the transforming mask mt depending on the desired usage: max or
min, according to the De�nition 2, De�nition 3 and De�nition 4.

4. Apply the alpha max (or min) convolution to each sub-block according to
the De�nition 5 and De�nition 7 and place the outcome on resulting image
T. ut

356 A. Alarcón-Paredes, E. Ventura-Molina, O. Pogrebnyak, and A. Arguelles-Cruz

Inverse alpha-beta convolution transform algorithm

1. The inverse alpha-beta convolution method, is applied individually to the
sub-blocks of transformed image T.

2. Initialize to 0 all values in the resulting recovered image A0 =
�
a0ij
�
m�n.

3. Locate each sub-block of the transformed imageT and apply the beta min (or
max) convolution according to the De�nition 8 and De�nition 6, using the
same transforming mask used in the alpha-beta convolution transform
algorithm and place the outcome on recovered image A0. ut

Since each time the mt is created, the maximum value of the current sub-
block is taken, it is required to store every maximum in a vector.

4 Results

a) b) c) d)

Fig. 1 Aerial image (a), with sub-block di¤erent sizes: 4 � 4 (b), 8 � 8 (c),
16� 16 (d).
In order to measure the proposed transform, a comparison between the orig-

inal and the transformed image was performed using the Shannon entropy [18].
The method presented in this paper was applied to a set of 20 images widely
used in many other papers, and was applied varying the size of sb (4� 4, 8� 8,
16 � 16) for each image, obtaining 60 transformed images. The set of testing
images are grayscale, and 8 bits/pixel, and have di¤erent sizes.

a) b) c) d)

Fig. 2 Baloon image (a), with sub-block di¤erent sizes: 4�4 (b), 8�8 (c), 16�16
(d).

Image transform based on an alpha-beta convolution model 357

a) b) c) d)

Fig. 3 Girl image (a), with sub-block di¤erent sizes: 4� 4 (b), 8� 8 (c), 16� 16
(d).

a) b) c) d)

Fig. 4 Lenna image (a), with sub-block di¤erent sizes: 4�4 (b), 8�8 (c), 16�16
(d).

Figures 1 to 6 show the original image (a) and some transformed images using
4� 4 sub-block size at (b), 8� 8 sub-block size at (c), and 16� 16 sub-block size
at (d). The results that compare the entropy between the original image versus
the transformed images are shown at Table 3.

a) b) c) d)

Fig. 5 Peppers image (a), with sub-block di¤erent sizes: 4 � 4 (b), 8 � 8 (c),
16� 16 (d).

358 A. Alarcón-Paredes, E. Ventura-Molina, O. Pogrebnyak, and A. Arguelles-Cruz

a) b) c) d)

Fig. 6 Zelda image (a), with sub-block di¤erent sizes: 4�4 (b), 8�8 (c), 16�16
(d).

Table 3. Entropy results with di¤erent sb sizes.
Image Size Entropy Entropy 4� 4 Entropy 8� 8 Entropy 16� 16
Aerial 2048� 2048 7:1947 5:7846 6:4473 6:8813
Baboon 512� 512 7:3577 6:4610 6:9275 7:1501
Baloon 720� 576 7:3459 3:8442 4:7928 5:6843
Barbara 720� 576 7:4838 5:7309 6:3724 6:8072
Bike 2048� 2560 7:0219 5:3234 6:0152 6:5303
Board 720� 576 6:8280 4:5892 5:3763 6:2891
Boats 512� 512 7:1914 5:5520 6:2688 6:8104
Couple 512� 512 7:2010 5:3092 6:0276 6:5776
Elaine 512� 512 7:5060 5:1970 5:8841 6:5101
F-16 512� 512 6:7043 4:8730 5:5588 6:0325
Girl 720� 576 7:2878 5:0300 5:8262 6:4912

Goldhill 720� 576 7:5300 5:3532 6:1223 6:6593
Hotel 720� 576 7:5461 5:4036 6:2258 6:9116
Lenna 512� 512 7:4474 5:1027 5:8879 6:5444
Man 512� 512 7:1926 5:5016 6:3273 6:9066
Peppers 512� 512 7:5943 5:1029 5:9029 6:662
Sailboat 512� 512 7:4847 5:7920 6:5942 7:1399
Ti¤any 512� 512 6:6002 4:7339 5:3748 5:8841
Woman 2048� 2560 7:2515 5:4033 6:0797 6:5413
Zelda 720� 576 7:3335 4:5692 5:3577 6:1714

The data contained in the table refers to the image dimensions in pixels,
entropy of the original image (Entropy), the entropy of the transformed image
using a mt of 4�4 pixels (Entropy 4�4), the entropy of the transformed image
using a mt of 8� 8 pixels (Entropy 8� 8), and the entropy of the transformed
image using a mt of 16� 16 pixels (Entropy 16� 16). The transformation stage
of an image compressor does not provide any information reduction, its main
purpose is to make easier the compression at following steps (quantization and
coding). Since the alpha-beta convolution transform provides information reduc-
tion, it is clear that represents an advantage over the traditional transforming
methods, besides the method proposed in this paper uses very simple operations
such as addition, substraction, minimums and maximums (comparisons).

Image transform based on an alpha-beta convolution model 359

5 Conclusions

The modi�ed alpha and beta operators are capable to handle real valued inputs
and may be used as well in image processing, and it is clear the next step could
be the use of modi�ed alpha-beta associative memories to perform the image
transform.
By replacing the sums of products in traditional convolution with the maxi-

mums or minimums of alpha and beta, was possible to create an alternative for
image transform in an image compression system, o¤ering low computational
cost by means of using simple operations.
The experimental results show that the alpha-beta convolution transform is

reversible, that is, this new method has no information loss. Although 8 de�n-
itions were presented, it is needed the proposition and demonstration of some
lemmas or theorems is required in order to formally prove this method is re-
versible.
As mentioned, the transformation stage in an image compression system

does not provide any compression to images, so since the method proposed in
this paper o¤ers a smaller entropy on the transformed images, it also represents
an advantage for the quantization and coding stages in an image compression
system.

References

1. Ahmed, N., Natarajan, T., Rao, K. R.: Discrete cosine transform. IEEE Transac-
tions on computers. 23 (1974) 90-93

2. Anderson, J. A.: A simple neural network generating an interactive memory, Math-
ematical Biosciences. 14 (1972) 197-220

3. Arai, Y., Agui, T., Nakajima, M.: A fast DCT-SQ scheme for image. Transactions
of the IEICE. 71 (1988) 1095-1097

4. Chen, W., H., Smith, C., H., Fralick, S. C.: A fast computational algorithm for
the discrete cosine transform. IEEE Transactions on Communications. 25 (1977)
1004-1009

5. Cosman, P., Gray, R., Olshen, R.: Handbook of medical imaging processing and
analysis. Academic Press. USA. (2000) ISBN 0-12-077790-8

6. Díaz de León Santiago, J.L. & Yáñez Márquez, C.: Memorias Morfológicas Het-
eroasociativas. IT-57, Serie Verde, ISBN 970-18-6697-5, CIC-IPN, México (2001)

7. González, R. C., Woods, R. E. & Eddins, S. L.: Digital Image Processing using
MATLAB. Prentice Hall. (2003). ISBN 0130085197

8. Hassoun, M. H.: Associative Neural Memories. Oxford University Press, New York.
(1993)

9. ISO/IEC IS 10918-1 j CCITT T.81: Digital Compression and Coding of
Continuous-Tone Still Image. (1992) ISO/IEC

10. Jain, A. K.: A sinusoidal family of unitary transforms. IEEE Transaction on Pat-
tern Analysis and Machine Intelligence. 4 (1979) 356-365

11. Kohonen, T.: Correlation matrix memories, IEEE Transactions on Computers, C-
21, 4 (1972) 353-359

360 A. Alarcón-Paredes, E. Ventura-Molina, O. Pogrebnyak, and A. Arguelles-Cruz

12. Kok, C. W.: Fast algorithm for computing discrete cosine transform. IEEE Trans-
actions on Signal Processing. 45 (1997) 757-760

13. Lakac, R., Plataniotis, K. N.: Color image processing methods and applications.
CRC Press, Taylor & Francis. USA. (2007) ISBN 978-0-8493-9774-5

14. McCulloch, W. & Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics. 5 (1943) 115-133

15. Pan, W.: A fast 2-D DCT algorithm via distributed arithmetic optimization. IEEE
Proceeding Image Processing. 3 (2000) 114-117

16. Ramírez, J., García, A., Frenadse, P. G., Parrilla, L., Lloris, A.: A new architec-
ture to compute the discrete cosine transform using the quadratic residue number
system. IEEE Int. Symposium on Circuits and Systems. (2000)

17. Rao, K. R., Yip, P., C.: The transform and data compression handbook. The
Electrical Engineering and Signal Processing Series. (2001) ISBN 0-8493-3692-9

18. Shannon, C. E.: A mathematical theory of communication. Bell system technical
journal. 27 (1948) 379-423 y 623-656

19. Steinbuch, K. V.: Die Lernmatrix. Kybernetik, 1, 1 (1961) 36-45
20. Wallace, G. K.: The JPEG still picture compression standard. Proceedings of Com-

munications of the ACM. 34 (1991) 30-44
21. Willshaw, D., Buneman, O. & Longuet-Higgins, H.: Non-holographic associative

memory, Nature. 222 (1969) 960-962
22. Winograd, S.: On computing the discrete Fourier transform. Proceedings of the

National Academy of Sciences of the United States of America. 73 (1976) 1005-
1006

23. Yáñez, C.: Associative memories based on order relations and binary operators (in
Spanish). Doctoral Theses. Center for Computing Research. (2002)

24. Yu, S., Swartzlander, E. E.: DCT implementation with distributed arithmetic.
IEEE Transactions on Computers. 50 (2001) 985-991

Image transform based on an alpha-beta convolution model 361

Security Token for Web Bank Applications Using a

Linear and Congruential Random Number Generator

Luis Orantes1, Marco Ramírez2, Pablo Manrique2, Victor Ponce2, Aniceto Orantes3,

Victor Salazar3, Antonio Montes3, Carlos Hernández4, Eric Gómez5

1Center for Research in Computing, Av. Juan de Dios Bátiz, Mexico City 07738, Mexico

lorantesg1101@alumno.ipn.mx
2Center for Research in Computing, Av. Juan de Dios Bátiz, Mexico City 07738, Mexico

{mars, pmanriq, vponce}@cic.ipn.mx
3HighBits, Av. Central Poniente #847 Int. 3, Tuxtla Gutiérrez, Chiapas 29000, Mexico

{aorantes, vsalazar, antonio}@highbits.com
4Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Av. Instituto

Politécnico Nacional 2580, Mexico City 07340, Mexico

carlos@highsecret.com
5Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Av. Instituto Politéc-

nico Nacional S./N. Unidad Profesional Adolfo López Mateos. Mexico City 07738, Mexico

ergomez@ipn.mx

Abstract. This paper presents a new algorithm for using with an one-time

password security token; the objective is to provide security for the authentica-

tion of customers using bank websites even in the cases when the user has been

the victim of a phishing or spyware attack and their bank account secret pass-

word has been stolen. For the token’s performance, the algorithm make use of a

Linear and Congruential Random Number Generator (LCG) (for a better under-

standing of the presented algorithm a short introduction to this arena is given),

and an exhaustive algorithm for the validation of the one-time password keys is

presented. This paper shows that the present algorithm is easy to implement and

safer than a competing algorithm widely used in today’s security tokens.

Keywords: Security token, cryptography, random number generators.

1 Introduction

Bank institutions have modernized their operations by allowing their customers to

perform almost any account transaction using the Internet. One of these operations

has been to transfer funds electronically to other bank accounts, bringing with this a

profound danger. The user may be a victim of phishing or may have, without knowing

it, installed spyware on their computer. Thieves use the user’s stolen passwords to

empty the user’s bank account and transferring the funds to a ghost bank account for

later withdrawal.

© E. Castillo, J.C. Chimal, A. Uriarte, L. Cabrera.

Advances in Computer Science and Engineering

Research in Computing Science 58, 2012 pp. 363–372

Paper Recived 20-08-2012 and Acepted 07-11-2012

One solution that has been given for this problem is the use of one-time password

generators (security tokens), which create a password that is valid for bank access just

once. With this technique, if the password is stolen it is rendered useless for accessing

the bank website. In addition to the conventional password the bank website will re-

quest the one-time password which if stolen it’s useless because it will be already

expired just right after the legitimate user introduced it to the bank website. In other

words, the token system proves that the user is who claims to be and acts as an elec-

tronic key to access the bank website services, offering security to the user even in

cases where their password has been stolen.

A security token is a hardware device usually with a LCD screen (this kind of se-

curity token doesn’t need to be connected to the computer when used) or provided

with a USB plug (this kind of security token needs to be connected to the computer

when used). Regarding the kind of approach they are used, security tokens can be

classified into several categories with some of the most common approaches: 1) one-

time passwords, 2) time-synchronized passwords and 3) challenge/response pass-

words. In this paper, the algorithm presented belongs to the one-time password cate-

gory.

It has been done plenty of research about token security but in this paper just one

reference will be done, just to the most common security token used nowadays. This

security token is the secureID token developed by RSA Security which uses a 64 bit

secret key for a hash function called Alleged SecureID Hash Function (ASHF). In

[14] it has been shown that the core of this security token can be broken in a few mil-

liseconds and they conclude that it doesn’t provide the security demanded by institu-

tions nowadays including banks. In contrast, the algorithm presented in this paper

offer much higher security just as it is (with a 64 bits secret key) but it may be virtual-

ly unbreakable resizing the presented algorithm to a larger key size as explained later.

The algorithm presented in this paper uses a Pseudo Random Number Generator

(RNG) as the encryption mechanism which is necessary for the generation of the one-

time passwords. The following section has a brief explanation of what a RNG is be-

cause randomness is the core of the presented algorithm and a basic background on

this topic is required for a better understanding of it.

2 Random Number Generators (RNG)

Computers can’t be random. What computers can do is to simulate a random

process by using a RNG. A RNG is an equation, which can generate a sequence of

pseudorandom numbers. This sequence of pseudorandom numbers is finite and, after

a certain quantity of pseudorandom numbers created, the sequence is repeated again

in a cyclic way. The length of the cycle is called the RNG period and this is given, in

the best cases, by the number of bits of the RNG and it’s limited by the bit number of

364 L. Orantes, M. Ramírez, P. Manrique, V. Ponce, A. Orantes, V. Salazar, A. Montes, C. Hernández, E. Gómez

the mathematical operations that can be computed. In ordinary PCs it is only 32 bits,

nevertheless it is possible to simulate 64 bits in C++ simply by defining a long long

variable type or even larger number of bits using a long int library.

There are several random number generators; the generator is selected depending

on the type of a specific. There are several kinds of applications for a RNG; the most

typical applications are: simulations (e.g., of physical systems to be simulated with

the Monte Carlo method), cryptography and procedural generation. For the selection

of the appropriate random number generator it should be taken on account not just the

quality of the random numbers the generator creates but also the complexity of the

generator.

For instance, for the particular application presented, it should be taken on account

that this algorithm may be implemented in hardware devices (e.g. a microcontroller).

These kind of devices may have limited resources such as computing capabilities and

battery life. Another factor to take on account in the generator selection is energy

consumption because we want the token to last as much as possible (at least a couple

of years). If the generator is too complex (i.e. computationally speaking too expen-

sive) the token life would last just a few months. A token with a short life span would

be too impractical for being used in real life applications. Also it is necessary the

token to generate the one-time passwords instantaneously and for achieving this goal

a random number generator quick to compute is mandatory.

On one hand there are very quick generators such as xorshift [1] [2] [3] which in

some cases may generate a full period but they generate very low quality random

sequences. The Linear feedback shift register RNG (LSFR) [4] is a popular generator

which in the past has been implemented in hardware [5] but it doesn’t generate a full

period. This is a very popular generator which has been implemented in several appli-

cations; important LFSR-based stream ciphers include A5/1 and A5/2, used in GSM

cell phones, E0, used in Bluetooth, and the shrinking generator. Nevertheless its

drawbacks were reveled when the A5/2 cipher has been broken and both A5/1 and E0

have serious weaknesses [6] [7].

On the other hand there are very high quality random number generators such as

Blum Blum Shub [8] [9], Yarrow algorithm [10] (incorporated in Mac OS X and

FreeBSD), Fortuna [11] [12] and CryptGenRandom [13] (incorporated in Windows)

that have the inconvenient of being computationally speaking too expensive for the

purpose of this algorithm.

2.1 The selected random number generator

The selected random number generator for being incorporated in the algorithm pre-

sented in this paper is the Linear and Congruential Generator”. This RNG was se-

lected by its satisfactory quality; also it has the advantage that it computes the random

Security Token for Web Bank Applications Using a Linear and Congruential Random Number Generator 365

sequences very quickly. Because of its low complexity this RNG is suitable for being

implemented in hardware applications with limited resources (e.g. a microcontroller).

A sequence of random numbers is obtained by evaluating the following equation:

mcaZZ ii mod1 (1)

This RNG requires a seed Z0 which is the initial state of the RNG; this can be seen

as the index or initial point of the random table and it will be the first value of the

random table. The next value of the random table is calculated by replacing Zi-1 with

the new obtained value and this process is repeated again. In other words, Zi-1 is the

value of the previously computed random number.

a, c and m are constants, nevertheless these values of these constants need to be

chosen carefully because the quality of the random table depends on them. There are

values for these constants that generate a poor quality random table and others that

don’t generate any random table at all. The value of m gives the cycle size of the ran-

dom table, that is to say, from which number the random table would repeat again. It

is desirable to have as many random numbers as possible; therefore the value of m

usually is as big as the maximum value it can be computed.

Multiple researches have been conducted to find out what the values of these con-

stants are the best. There are several approaches for determining the quality of the

pseudorandom number sequence generated by a given constant values, for instance in

[15] this quality is examined by scatter plots and spectral test but there are many other

techniques for determining the quality of a pseudorandom sequence and if this quality

is acceptable enough. The generator, “Linear and Conguential Generator” is especial-

ly very sensitive to the choice of these constants values and in the past have been poor

choices for the values of these constant with not good results [16].

These constants need to meet some conditions; for instance to guarantee a genera-

tion of a full period for any seed values when having a non-zero value for c; they need

to meet the following conditions [15]:

1. c and m must be relative primes,

2. a-1 must be divisible by all prime factors of m,

3. a-1 must be a multiple of 4 if m is a multiple of 4.

It is recommended for a 64-bit variable such as an ordinary PC can simulate by de-

fining a long long variable type in C++ to be the next:

a = 6364136223846793005

c = 1442695040888963407

m = 264

366 L. Orantes, M. Ramírez, P. Manrique, V. Ponce, A. Orantes, V. Salazar, A. Montes, C. Hernández, E. Gómez

3 Algorithm for the generation of one-time passwords on the

token side

Equation 1 is capable of generating a pseudo-random table; nevertheless it is neces-

sary to have a unique random table for every token that is constructed. It is desirable

to have a different sequence of numbers for every token. It is possible to achieve this

by encrypting equation 1 by performing a XOR operation of the generated random

number with a secret key K. After this, it is necessary to resize the encrypted sequence

to values that can fit within the eight digits of a LCD display (i.e. values that range

from 0..99,999,999 = 98) This is done by performing a modulus operation of the cal-

culated Zi value with 98+1. With this the one-time passwords will range from 0 to 98.

The equation then becomes:

kmcaZZ ii mod1 (2)

 (3)

The security token needs to be initialized, it is necessary to have a seed value for

this and the same value of the secret key K as the seed for the token which will be the

Zi value. This value will be stored in the token’s memory and it will be used for com-

puting the next one-time password by the security token and also at the server side to

validate a one-time password. The first 1,000 one-time passwords are generated at the

security token side for being wasted (this is done for allowing detection of 1,000 ex-

pired one-time password as explained later).

On the token side the value of K is obtained and is used as seed Z0 for evaluating

Equation 2 and 3 and generating a one-time password. This equation is evaluated

again to obtain another one-time password. In this way, every time the “generate a

one-time password” button is pushed a pseudorandom encrypted sequence is ob-

tained. See Table 1 for an example of this.

Table 1. Example of a sequence of numbers generated by the token

Counter One-time password

1 82475249

2 82040631

3 72383201

4 68714439

5 32340945

6 88383319

7 94725313

8 10436071

Security Token for Web Bank Applications Using a Linear and Congruential Random Number Generator 367

4 Algorithm for the one-time password validation at the server

side

In order to validate a one-time password on the server side, it is necessary to de-

crypt the one-time password introduced by the user. However, a modulus operation

can’t be reversed (the resulting double modulus operation used in Equation 3 is even

more irreversible). Therefore it is not possible to decrypt the one-time password in-

troduced by the user as usual (i.e. performing the inverse operations); for this reason it

is decrypted using an exhaustive algorithm.

At the server side, the one-time password is validated by computing Nexp (it’s com-

puted for 1,000) expired one-time passwords generated from the actual value of Zi

that is stored in the server using the algorithm previously explained (refer to section

3). These are previous valid one-time passwords that were introduced by the user but

they already expired; this is done to give feedback to the user and the user may distin-

guish between an invalid or an expired one-time password (valid but expired; it was

already introduced by the user to the bank website before). If this is found within the

Nexp expired it comes to inform the user that introduced one-time password was valid

in the past but it already expired (i.e. it won’t be accepted as valid anymore).

After this, Nval (10,000) valid one-time passwords are generated using the same

previous approach. These are the possible valid keys for the actual state of the token.

If the one-time password introduced by the user is within this range the key is ac-

cepted as valid. The value of Zi for the key that matched minus Nexp expired is stored

in the server. This value will be necessary for computing the Nexp and Nval one-time

passwords for a future validation. If no match is found it comes to reject the intro-

duced one-time password by the user and the Zi value stored at the server side remains

unchanged.

One advantage of the algorithm presented in this paper is that a range of only Nval

valid keys are accepted. One-time passwords that are not valid in one moment be-

come valid in another. This is according to the actual value of Zi stored at the present

moment at the server side. This allows us to have a very low probability that a one-

time password is accepted by the server as valid, which redounds to a highly secure

system.

It is taken into account that the user may waste one-time passwords by generating

and not using them (i.e. the user didn’t introduced to the bank website a one-time

password generated by the token); for this reason there is a range N valid. This range

gives us a tolerance in the number of acceptable one-time passwords; it is necessary

this value to be as small as possible because this will give us a lower probability that

an attacker, in a random way, may guess a one-time password. This further contri-

368 L. Orantes, M. Ramírez, P. Manrique, V. Ponce, A. Orantes, V. Salazar, A. Montes, C. Hernández, E. Gómez

butes to a higher level of security. Given that these one-time passwords are of eight

numeric digits and have a range Nval (of 10,000 valid one-time passwords). This re-

sults in a probability of almost one in 100 million that a given one-time password will

be accepted as valid. On the other hand, if the user wastes more than 10,000 keys by

generating one-time passwords and not introducing it at the server, a desynchroniza-

tion occurs and the token becomes useless; therefore the value for the range of Nval

should be carefully considered.

Noteworthy this maximum value for wasted one-time passwords is reset between

validations, which means that if the user has a considerable amount of one-time pass-

words wasted the range Nval is reset to 10,000 at the server side once a one-time pass-

word is accepted, giving the user the maximum number of one-time passwords that

can be wasted again.

One advantage of this algorithm is that it isn’t necessary to store the generated one-

time passwords in the server. only the value of Zi is stored in the server. For this rea-

son, this algorithm doesn’t waste space in the server for storing expired one-time

passwords nor resources to determine if the one-time password introduced by the user

is part of the expired ones. Perhaps this is not significant with one user but it’s taken

into account that a bank institution may have millions of clients then the saved space

and resources becomes significant. The algorithm also has the advantage that once a

one-time password has been accepted and validated, all the previous ones are auto-

matically expired, even in cases where they haven’t been introduced to the server.

5 Number of maximum generated one-time passwords

In spite of the fact, that this algorithm is able to compute eight digits range, it is not

recommended to use the full range. It is possible that an attacker may be storing the

one-time passwords that have been generated by the token as they are introduced to

the website by the user. This leads to the hypothetical possibility that the probability

of guessing a one-time password in an arbitrary way increases. This is because the

attacker knows which one-time passwords already were used in the past and he

wouldn’t try them again. The recommendation is to cancel the token after a million

one-time passwords are remaining within it. Thereby, the probability of guessing a

one-time password goes from approximately 1-in-100 million to 1-in-one million.

This calculation was done by assuming that there was an attacker storing the entire

history of the generated one-time passwords by the token for years. This scenario is

very impractical. This is a very theoretical scenario but this is done as an extra securi-

ty measure.

Security Token for Web Bank Applications Using a Linear and Congruential Random Number Generator 369

6 Attacking the algorithm

The way to attack the presented algorithm is to have an attacker storing the entire

one-time password introduced by the user in the bank web site. Let´s say the attacker

has two one-time passwords collected; to attack the algorithm a full search through

the 64 bits generated random sequence is performed. This is done for every possible

key K to find which key produce a sequence that matches those the attacker has. It

may occur that there is more than one single K than match the sequence; if this is the

case the attacker needs to wait for another one-time password. This will help to re-

duce the number of candidate secret keys K which match the stored sequence and

could be the secret key. This process needs to be repeated again and again until it’s

found that only one key K match the sequence of one-time passwords the attacker has

collected. If this is the case the secret key K has been for the token under attack. The

following one-time passwords can be predicted for sure, therefore breaking the token

security.

Performing this attack as the algorithm was presented in this paper (i.e. having a 64

bits Linear and Congruential Random Number Generator) is already computationally

speaking a hard code to break with a PC because the attacker needs to try with 264

one-time passwords times the 264 possible keys resulting in 2128 one-time passwords

in total. Nevertheless it is possible to strengthen the algorithm and protect it from this

kind of attack by using a larger number of bits for the RNG; (let’s say 1024 bits for

instance). The algorithm presented in this paper was of 64 bits; this is because 64 bits

operations can be computed with ordinary PC instructions. As explained previously it

is possible to simulate operations of larger number of bits using a long integer library

(this library is commonly used for cryptographic applications). With this it is possible

to assure that the algorithm is totally unbreakable.

7 Open Research Issues

Equation 2 is capable to generate multiple derived random sequences for a given

values for the constants a, c and m. A research needs to be conducted for determining

if the derived random sequences are as random as the original one, or at least random

enough. Another issue that is left for future research is related with the constants of

the RNG. In this paper the algorithm was presented assuming a 64 bits RNG and it

was also proposed to enlarge the bit number of the RNG to make the algorithm

stronger. Nevertheless, a research needs to be conducted to find out the best constants

values for a and c that generate the best random sequence for a 1024 bit m size.

To keep in touch with the research advances of this project please visit

http://www.highsecret.com where related information will be posted continuously.

370 L. Orantes, M. Ramírez, P. Manrique, V. Ponce, A. Orantes, V. Salazar, A. Montes, C. Hernández, E. Gómez

Acknowledgments. The first author acknowledges support from the Mexican Council

of Science and Technology (CONACYT) to pursue MSc studies at CIC-IPN. The

second author acknowledges National Polytechnic Institute of Mexico.

Bibliography

1. Marsaglia, George (July 2003). "Xorshift RNGs". Journal of Statistical Software

2. Brent, Richard P. (August 2004). "Note on Marsaglia’s Xorshift Random Number Genera-

tors". Journal of Statistical Software

3. Panneton, François (October 2005). "On the xorshift random number generators". ACM

Transactions on Modeling and Computer Simulation (TOMACS)

4. M. Goresky and A. Klapper, Algebraic Shift Register Sequences, Cambridge University

Press, 2012

5. Linear Feedback Shift Registers in Virtex Devices, Maria George and Peter Alfke, Xilinx

press

6. Barkam, Elad; Biham, Eli; Keller, Nathan (2008), Journal of Cryptology

7. Lu, Yi; Willi Meier; Serge Vaudenay (2005). "The Conditional Correlation Attack: A

Practical Attack on Bluetooth Encryption"

8. Lenore Blum, Manuel Blum, and Michael Shub. "A Simple Unpredictable Pseudo-

Random Number Generator", SIAM Journal on Computing

9. Lenore Blum, Manuel Blum, and Michael Shub. "Comparison of two pseudo-random

number generators", Advances in Cryptology: Proceedings of Crypto

10. Notes on the Design and Analysis of the Yarrow Cryptographic Pseudorandom Number

Generator, J. Kelsey, B. Schneier, and N. Ferguson, Sixth Annual Workshop on Selected

Areas in Cryptography, Springer Verlag

11. Niels Ferguson and Bruce Schneier, Practical Cryptography, published by Wiley

12. John Viega, "Practical Random Number Generation in Software," acsac, pp. 129, 19th An-

nual Computer Security Applications Conference

13. Dorrendorf, Leo; Zvi Gutterman, Benny Pinkas. "Cryptanalysis of the Random Number

Generator of the Windows Operating System"

14. Cryptanalysis of the Alleged SecurID Hash Function, Biryukov Alex

15. A Collection of Selected Pseudorandom Number Generators, Kart Entacher

16. Press, William H., et al. (1992). Numerical Recipes in FORTRAN 77: The Art of Scientific

Computing (2nd ed.).

Security Token for Web Bank Applications Using a Linear and Congruential Random Number Generator 371

Simulation & Modeling

Classical Realization of Grover’s Quantum Search
Algorithm using Toffoli gates

Manuel-Iván Casillas-del-Llano1 and Álvaro-Lorenzo Salas-Brito2

1Universidad Autónoma Metropolitana. Unidad Azcapotzalco. D.F., México

al210180113@alumnos.azc.uam.mx
2Universidad Autónoma Metropolitana. Unidad Azcapotzalco. D.F., México

asb@correo.azc.uam.mx

Abstract. Grover’s algorithm is used to search for quantum data. However, this
algorithm procedure is described by means of concepts and operators from quan-
tum theory; concepts hardly known by computer scientists. In this work we pro-
pose an alternative classical computing model of Grover’s algorithm, using Toffoli
gates connected with elementary gates. Our model has been programmed on a
high-level programming language and tested using arbitrary elements on a data
set. Our results are concordant with those presented on the reference section.

Keywords: Grover algorithm, Toffoli gates, Quantum computing.

1 Introduction

A computer is a physical device that aids us to process information while running
some algorithms. An algorithm is well defined procedure, with finite description,
that executes some information processing task. A task of this kind can be done by
means of physical processes.

At the design level of complex algorithms, it is useful and essential to work with
some idealized computational model. However, while analyzing the true limitations
of a computer device, especially for practical reasons, it is important not to forget
the link between computing and physics Idealized models can not fully represent all
the details of these computational devices.

Classical computing has several limitations. There are problems that cannot be
deal with actual computing, such as the impossibility to run on polynomial time the
travelling agent problem algorithm or integer factorization.

However, it has been shown that those kinds of problems can be handled by
quantum computing. Quantum computing uses the phenomena described by quan-
tum theory in order to process information and execute tasks faster than classical
computing. Devices that process quantum information are named quantum compu-
ters.

© E. Castillo, J.C. Chimal, A. Uriarte, L. Cabrera.

Advances in Computer Science and Engineering

Research in Computing Science 58, 2012 pp. 375–390

Paper Recived 30-09-2012 and Acepted 07-11-2012

2 Grover’s Algorithm

Suppose there is a non sorted data base of size N consisting (without loss of gene-
rality) of numbers from 0 to N – 1. Using traditional algorithms, we must look up
for every element on the data base in order to find the desired item. The average
number of steps needed is N/2, and N on the worst case scenario; therefore, search-
ing for an element has order of ()O N time complexity. However, using quantum

mechanics procedures, Grover’s algorithm only requires ()O N steps. [1]

Initially, an n qubit system, with 2nN = elements, is set in an equal superposi-
tion of all basis states, expressed as

1

0
0

1 N

i

i
N

−

=

Ψ = ∑ (1)

It is posible to search for a specific element inside this system. This particular

element is defined as the marked state, while the remaining elements of the set are
defined as the collective state [1]. In order to perform the searching of the marked
state, two special operators C and D are used, defined as inversion and diffusion op-
erator, respectively. Operator C has the effect to invert or change the sign of the am-
plitude in the marked state, and ignores the rest of the elements belonging to the col-
lective state. When operator D is applied to the superposition of states, it increases
the amplitude of the marked state, decresing the amplitude of the collective state. If
we define the compound operator as U DC≡ , then each operation of U is called

an iteration. It has been shown that after U is repeated ()O N times, the probabil-

ity of getting the marked state when a mesaurement is made approeaches 1 [1].

2.1 Representation of inversion and diffusion operators.

Before reading the following sections, we encourage you to read [4], where the
most important operations on quantum computing are explained in great detail. Al-
so, for a wide explanation of Grover’s Algorithm insights, we recommend reading
[1].

Given the superposition of states ()
1

0
0

1
N

i

N i
−

=

Ψ = ∑ , we will denote the

marked state as M .

376 Manuel-Iván Casillas-del-Llano and Álvaro-Lorenzo Salas-Brito

Inversion operator C is defined as 2C I M M≡ − , where I is the identity

matrix[5]. Similary, diffusion operator D is defined as 2D I≡ Ψ Ψ − .

To be able to represent these operators by means of Toffoli gates and elementary

operations, it is necessary to know the effect produced by them on the superposition

of states. Let’s split 0Ψ into two parts: the marked state and the collective state,

that is, a linear combination of 0Ψ defined as:

 0 Mα βΨ = Ψ + (2)

where α andβ are their respective amplitudes of the collective state and the

marked state.
Next, we will apply the inversion operator to this linear combination of states:

() ()()= 2C M I M M Mα β α βΨ + − Ψ +

 () 2
C M M

N

αα β α β Ψ + = Ψ − + 
 

 (3)

At this moment, C operator has changed the sign of the marked state. Next step is

to apply the diffusion operator on equation (2). That is:

()2 2
2D M I M

N N

α αα β α β
      Ψ − + = Ψ Ψ − Ψ − +      

      

 2 4 2 2
D M M

NN N N

α α β αα β α β
      Ψ − + = − − Ψ + +      

      
 (4)

We have applied once the compound operator U DC≡ , and so, an iteration of

Grover’s algorithm have been made. According to [7], the number of iterations

needed to approach the amplitude of the marked state to 1 is / 4Nπ 
  .

Classical Realization of Grover’s Quantum Search Algorithm using Toffoli gates 377

2.2 Alternative representation of Grover’s algorithm using different
approaches.

Grover algorithm can be also represented by circuits using interconnected quantum
gates and the Toffoli gate [8]. A circuit for 2 qubit system is shown in Figure 1.

Fig. 1. A quantum circuit that implements Grover’s algorithm for N = 4 elements. Pauli
matrix σx behaves as a NOT gate. Block with letter O denotes a query to the oracle.

Another representation of Grover’s algorithm can be implemented using optical ap-
proaches, as described in [16] for a system of 2 qubit elements. An implementation
using two trapped atomic ion qubits for a system of 2 qubit elements is also pro-
posed [17]. Other representations such as nuclear magnetic resonance are described
in [5].

As it will be shown on the next sections, we will build a model that will also
represent Grover’s algorithm, but using only classical (non-quantum) elementary
gates (with its limitations, see Conclusions section).

3 Toffoli gates

Toffoli gates were invented by Tommaso Toffoli [15]. Its main characteristic is that
it is a universal reversible logic gate. It is a universal gate because any logic gate can
be constructed by means of several Toffoli gates interconnected. It is a reversible
logic gate because, given a certain output, we can obtain its corresponding input.
Toffoli gates can be modeled using the billiard ball model [2]. This gate is also
known as a controlled-controlled-NOT gate, because it flips the third bit on a 3-bit
gate if and only if the first two bits are 1. Fig. 2a) shows Toffoli gate truth table
when applied to three bits, and Fig. 2b) shows its circuit representation.

Toffoli gates are crucial for our proposed model, since it will aid us in the con-

struction of the inversion operator C because it can detect if the marked state was
found or not (see Section 4.2). The output of the inversion operator C will be zero if
the element is not the marked state, and it will be 1 if the marked state was found.
These outputs will be used then for further calculations.

378 Manuel-Iván Casillas-del-Llano and Álvaro-Lorenzo Salas-Brito

Fig. 2. a) Toffoli gate truth table when applied to three bits. b) Circuit implementation.

4 Realization of Grover’s Algorithm using Toffoli gates

Now that we have obtained the neccesary equations from the preceeding section,
we now are able to model Grover’s algorithm. If we look closely to Eq. 3 and 4, we
can see that the operations involved are elementary additions, substractions, multip-

lications and divisions, such as 4 2N Nα α β− − . Thus, we need basic gates that

perform these operations, such that this model will be constructed interconnecting
classical logic gates. The elements involved in these basic operations are needed for
the model, so we must supply them at the beginning of the execution. We call these
elements as the control data of the model. Also, the input data will consist of the
initial element list, which contains the superposition of states. Fig. 3 shows a general
diagram for the proposed model.

Fig. 3. General shematic of Grover’s algorithm procedure. Grover operator is applied the op-
timum number of iterations in order to increase the amplitude of the marked state, and thus
increasing its probability.

Classical Realization of Grover’s Quantum Search Algorithm using Toffoli gates 379

Elements from Figure 3 are described below.

Input data: It consists of the element list, which stores the marked state and the

colective state.

Control data: These are fixed data that must be supplied to the algorithm before

its execution. Control data consists of α , which represents the amplitude of the
marked state; β , which stores the amplitude of all the collective set; and finally

1 N and 1 N , where N represents the total number of states on the database.

Grover operator: This operator was defined in section 2 as U DC≡ .

Input data amplitudes. This is the set of the final amplitudes of the marked state

and the collective state. After applying Grover operator a total of / 4Nπ 
  itera-

tions to the superposition of states, we expect that the amplitude of the marked state
is almost 1.

4.1 Elementary gates

In order to implement Grover’s algorithm using non-quantum operations through
classical gates, we need to define them first. Such gates constitute the set of basic
operators of the model.

Π GATE
This gate requires two input elements. It returns the product of both elements.

(See Fig. 4)

Fig. 4. π-gate: it returns the product of x times y

380 Manuel-Iván Casillas-del-Llano and Álvaro-Lorenzo Salas-Brito

∑ GATE
 This gate also requires two input elements. It returns the sum of both elements.

(See Fig. 5)

Fig. 5: ∑-gate: it returns the sum of x and y.

σ GATE

 For this gate, two input data are needed. If the second element is set to 1, the first

element will suffer a change of its algebraic sign, otherwise, it will remain unaltered.

(See Fig. 6)

Fig. 6: σ -gate: if y is set to 1, this gate will change x’s sign. Oterwhise, x will keep un-
changed.

4.2 Modeling of Grover operator using Toffoli and elementary gates.

As stated before, Grover operator consists of the application of C operator, fol-
lowed by D operator, that is,U DC≡ .

Inversion operator C is constructed according to the element we are searching for,
that is, the marked state. We constructed inversion operator using the binary repre-
sentation of the element as follows: if the marked state contains zeroes, two NOT
gates are put sequentially, otherwise, no gate is needed. These gates are connected
by means of a Toffoli gate; this gate acts as follows: if every bit is set to 1, it means
that the marked state was found, and it will return a 1 as an output, otherwise, it will
return a zero, (that is, the marked state was not found).Suppose we want to search
for the element 10 on the superposition of states (whose binary representation is
1010 for a 4-bit system). Construction for the inversion operator C using elementary
and Toffoli gates is shown in Fig 7.

Classical Realization of Grover’s Quantum Search Algorithm using Toffoli gates 381

Fig. 7: Construction of inversion operator C for element 10 (which binary representation is
1010). Fifth bit is set to 0, so if every remaining bit at the end was set to 1, this bit will be also
switched to 1, meaning that the marked element was found.

Diffusion operator D is needed to increase the amplitude of the marked state. Ac-

cording to Equation 3, this operator can be constructed using elementary gates as
shown in Fig 8.

Fig. 8: Diffusion operator. Interconnection of classical gates allows to increase the ampli-

tude of the marked state. This operator along with the inversion operator succesfully simu-
lates Grover operator U = CD. αt and βt are variables that will be used on further calculations.

382 Manuel-Iván Casillas-del-Llano and Álvaro-Lorenzo Salas-Brito

For illustrative purposes, let’s take a closer look at the first part of Fig. 8. Eq. 4
shows that the partial chain of operations4 Nα α− is performed. This is done by
the section described in Fig. 9, taken from the diagram in Fig. 8

Fig. 9: Carefully following each element on the diagram, we see that the operation

4 Nα α− is successfully made.

4.3 Searching for a marked state using the model.

In order to show how the model works, let’s look for the element labeled “4”
stored in a list of 3 q-bit elements. First, we construct the Inversion operator C for
element 4 using a Toffoli gate and NOT gates (see Fig. 10)

Fig. 10: Construction of inversion operator C for element 4 (which binary representation is
100). Fourth bit is set to 0, so if every remaining bit at the end was set to 1, this bit will be al-
so switched to 1, meaning that the marked element was found.

Toffoli gates are useful on the task of finding the marked state, since it detects

wherever the marked state is there or not. Since the entire list consists of 8 elements
(from 0 to 7), we must apply the inversion operator for every single element belong-
ing to the list. Fig. 11 shows the results of applying the inversion operator on ele-
ment 3 and 4.

Classical Realization of Grover’s Quantum Search Algorithm using Toffoli gates 383

Fig. 11: When inversion operator is applied to element “3”, it returns a 0 since it is not the
marked state. On the other hand, C operator returns a 1 when applied to the element 4, that is,
the marked state was found. This outputs are used on further calculations.

Next step is to increase the amplitude of the marked state using the diffusion op-

erator. Fig. 12 shows how while combining the outputs from both in andversion dif-
fusion operators we increase the amplitude of the marked state, while the collective
state remains without change. Notice that only the element 3 and 4 are shown for
simplicity, but this has to be done for every element on the list of elements.

Fig. 12: With the ouput of inversion operator, it is now possible to increment the ampli-

tude of the marked state. To accomplish this, we apply diffusion operator D and combine it
with the output of inversion operator C, just like Eqs. 3 and 4 describe. Notice how the out-
puts from the inversion operator are multiplied by the auxiliary variable βt and then added to
the final result. Since the ouput from the inversion operator is always zero for elements of the
collective state, the product is also zero and nothing is added, except from the marked state.

384 Manuel-Iván Casillas-del-Llano and Álvaro-Lorenzo Salas-Brito

5 Simulation of the model using a high-level programming
language.

At this stage, we can program an algorithm that simulates the processes of Grover’s
algorithm for quantum search. This algorithm will be programmed on a high-level
programming language to run some tests, in order to validate our model.

5.1 General Algorithm

We present the general steps needed to simulate correctly Grover’s Algorithm. This
algorithm is based on Equations 3 and 4. Its advantage consists of the few steps
needed to simulate Grover’s algorithm.

Classic Grover Algorithm

Input
 N: the total number of elements on the system.

()1 2 1, ,..., Nβ β β −Β =
�

: the amplitude quoeficient vector

of the collective state.

Mα : the amplitude of the marked state.

Output

()1 2 1' , ' ,..., 'Nβ β β −Β =
�

: the changed amplitude quoefi-

cient vector of collective state.
'Mα : the new amplitude of the marked state.

Variables
:β the value of the amplitude of the collective

state. We can store it on a single variable since
all the collective state will have the same ampli-
tude through the entire algorithm.
coef: an auxiliary variable used to store interme-
diate values.

Begin

//Initialize every element of the vector iβ ∈ Β
�

 and

//the amplitude of the marked state to Mα an

//equally superposition of states

1 Nβ ←

1M Nα ←

Classical Realization of Grover’s Quantum Search Algorithm using Toffoli gates 385

Repeat from i = 1 to 4Nπ 
 

//Apply the operations from Equation 3 to the
//amplitude of the marked state and the
//collective state.

 ' 4 2M M M N Nα α α β← − −

 2 Nβ α β← +

//Store the new normalized marked state to the
auxiliary variable.

 'Mcoef Nα←

 //Assign each element iβ ∈ Β
�

 its new amplitude.

 i coefβ ←

 //Assign the new amplitude of the marked state.
 'M coefα β← +

End Repeat

In order to valídate our proposed model, we implemented it using the program-
ming language C++. Data input consists of the number of qubits n and the number

of desired iterations. It let you choose the optimum number of iterations 4Nπ 
  ,

or any other number of iterations.

5.2. Tests using the optimum number of iterations

Table 1 shows the results for databases built from 1 to 10 qubits, using the opti-
mum number of iterations. The probability of the marked state is the probability
of obtaining the marked state when a measure of the superposition of states is made.
The probability of the collective state (or probability of failure) is the probability
of obtaining one of the elements of the collective state. Since the probability of the
marked state is always same, despite the element searched for, it is unnecessary to
list the marked state. This means that if we are looking for the element numbered as
3 on a list of 16 elements, the probability of obtaining it after applying Grover’s al-
gorithm is 96.1319%, and that probability will not change if we are looking for the
element numbered as 5 on that same list.

386 Manuel-Iván Casillas-del-Llano and Álvaro-Lorenzo Salas-Brito

Table 1. Probabilities of obtaining the marked state and the collective state embedded into an
n-qubit system, using the optimum number of iterations.

No. of qubits

n
Number of
elements N

Number of
iterations

4Nπ 
 

Probability
of the

marked state

Probability
of the collec-

tive sate

1 2 1 50% 50%
2 4 1 100% 0%
3 8 2 94.5313% 5.4691%
4 16 3 96.1319% 3.8685%
5 32 4 99.9182% 0.0806%
6 64 6 99.6586% 0.3402%
7 128 8 99.5620% 0.4318%
8 256 12 99.9947% 0.0052%
9 512 17 99.9448% 0.0511%
10 1024 25 99.9461% 0.1023%

5.3 Tests using an arbitrary number of iterations

We made tests using an arbitrary number of iterations, instead of the optimum num-
ber. Table 2 shows the results for states from 1 to 10 qubit.

Table 2. Probabilities of obtaining the marked state and the collective state embedded into an

n-qubit system, using an arbitrary number of iterations.

No. of qubits

n
Number of
elements N

Number of
iterations

Probability
of the

marked state

Probability
of the collec-

tive sate
1 2 3 50% 50%
2 4 3 25% 75%
3 8 6 99.9786% 0.0217%
4 16 7 36.4913% 63.5085%
5 32 7 20.9918% 79.0097%
6 64 12 0.0071% 99.9936%
7 128 10 91.9442% 8.0518%
8 256 18 54.1236% 45.7980%
9 512 20 94.2684% 5.7232%
10 1024 27 97.8187% 2.1483%

Classical Realization of Grover’s Quantum Search Algorithm using Toffoli gates 387

